Imperial College London **Developing teaching material for** formal modeling of security protocols

Daming Chen and Michael Huth

Overview

- Undergraduate students learn concepts of and attacks on security protocols from coursework, but have \bullet difficulty applying these skills to designing and verifying real-world security protocols
- We currently develop teaching material to address this deficiency through hands-on modeling and verification of current security protocols using tools from academia/industry
- Material will be integrated into Networking course at Imperial College London, but also publicly available \bullet for adaptation or rearrangement

Approach

Development of bespoke teaching material focusing on modeling security protocols

Goals

- Knowledge of at least one protocol modeling tool
- Competence in modeling security protocols
- Consists of individual flexible modules that can be rearranged to fit student and course needs
- Provides background material in related subjects \bullet that students may not be familiar with
- Includes supplemental material on more advanced topics for longer courses or experienced students
- Utilizes academic/industrial protocol modeling ${ \bullet }$ and verification tools

- Understanding of formal intruder models
- Ability to interpret tool results and attack traces \bullet
- Appreciation of theoretical limitations in formal modeling and verification of protocols
- Design and validation of novel security protocols

Fig.A: Proposed module sequence for teaching material

Example Protocol Model
role alice (A, B: agent,
Ka, Kb: public_key,
SND, RCV: channel (dy))
played_by A def=
local
State : nat,
Na, Nb: text
init

State := 0

transition

- 0. State = $0 \land RCV(start) = >$
- State':= $2 \land Na' := new() \land SND(\{Na'.A\})$ _Kb)
 - ∧ secret(Na',na,{A,B})
 - /\ witness(A,B,bob_alice_na,Na')
 - 2. State = 2 /\ RCV({Na.Nb'}_Ka) = >
 - State':= $4 \land SND(\{Nb'\}_Kb)$
 - / request(A,B,alice_bob_nb,Nb')

end role

....

- role session(A, B: agent, Ka, Kb: public_key) def=
- local SA, RA, SB, RB: channel (dy)

composition

- alice(A,B,Ka,Kb,SA,RA)
- ∧ bob (A,B,Ka,Kb,SB,RB)
- end role

. . .

Conclusion

- Students need real-world understanding of modeling and verification techniques for security protocols
- Currently developing teaching material to build student experience through hands-on exercises
- Material will be integrated into Networking course at Imperial College London, but also publicly available

