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Abstract—Commercial-off-the-shelf (COTS) network-enabled
embedded devices are usually controlled by vendor firmware
to perform integral functions in our daily lives. For example,
wireless home routers are often the first and only line of defense
that separates a home user’s personal computing and information
devices from the Internet. Such a vital and privileged position in
the user’s network requires that these devices operate securely.
Unfortunately, recent research and anecdotal evidence suggest
that such security assumptions are not at all upheld by the devices
deployed around the world.

A first step to assess the security of such embedded device
firmware is the accurate identification of vulnerabilities. However,
the market offers a large variety of these embedded devices,
which severely impacts the scalability of existing approaches in
this area. In this paper, we present FIRMADYNE, the first
automated dynamic analysis system that specifically targets Linux-
based firmware on network-connected COTS devices in a scalable
manner. We identify a series of challenges inherent to the dynamic
analysis of COTS firmware, and discuss how our design decisions
address them. At its core, FIRMADYNE relies on software-based
full system emulation with an instrumented kernel to achieve the
scalability necessary to analyze thousands of firmware binaries
automatically.

We evaluate FIRMADYNE on a real-world dataset of 23,035
firmware images across 42 device vendors gathered by our system.
Using a sample of 74 exploits on the 9,486 firmware images that
our system can successfully extract, we discover that 887 firmware
images spanning at least 89 distinct products are vulnerable to one
or more of the sampled exploit(s). This includes 14 previously-
unknown vulnerabilities that were discovered with the aid of
our framework, which affect 69 firmware images spanning at
least 12 distinct products. Furthermore, our results show that
11 of our tested attacks affect firmware images from more than
one vendor, suggesting that code-sharing and common upstream
manufacturers (OEMs) are quite prevalent.

Note: This version has been corrected to account for 41 exploited firmware
images that were not ping reachable, fix a typo in Fig. 1, and clarify Table VI.

I. INTRODUCTION

With the proliferation of the so-called “Internet of Things”,
an increasing number of embedded devices are being connected
to the Internet at an alarming rate. Commodity networking
equipment such as routers and network-attached storage boxes
are joined by IP cameras, thermostats, or even remotely-
controllable power outlets. These devices frequently share
certain technical characteristics, such as embedded system
on a chip (SOC) designs based on ARM or MIPS CPUs,
network connectivity via Ethernet or WiFi, and a wide variety
of communication interfaces such as GPIO, I2C, or SPI.
Nevertheless, many of these devices are controlled by vendor
and chipset-specific firmware that is rarely, if ever, updated to
address security vulnerabilities affecting these devices.

Unfortunately, the poor security practices of these device
vendors are only further exacerbated by the privileged network
position that many of these devices occupy. For example, a
wireless router is frequently the first and only line of defense
between a user’s computing equipment (e.g., laptops, mobile
phones, and tablets) and the Internet. An attacker that succeeds
in compromising such a networking device is able to gain
access to the user’s network, and can further reconfigure the
device to tamper with arbitrary network traffic. Since most
vendors have not taken any initiative to improve the security of
their devices, millions of home and small business networks are
left vulnerable to both known and unknown threats. As a first
step towards improving the security of commodity computer
equipment, we propose to address the challenge of accurately
identifying vulnerabilities in embedded firmware head-on.

Previous research on the security of embedded firmware
can be categorized based on various analysis approaches. For
example, Zaddach et al. [19] perform dynamic analysis by
partially offloading execution of firmware to actual hardware.
While such an approach is precise, it incurs significant hurdles
for large-scale analysis. First, the requirement that the analyst
must obtain the physical hardware for the device under
test poses a significant financial burden. Second, and more
importantly, the manual effort needed to identify and interface
with the debugging port on the device places strict limits on the
scalability of this technique, especially for consumer equipment
that may not support hardware debugging functionality.

In contrast, Costin et al. [8] utilize static analysis techniques
to unpack the firmware of embedded devices and identify
potentially vulnerable code or binaries inside. While this
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approach scales to thousands of firmware images, it suffers
from the classic trade-offs of static analysis. Namely, either the
analysis is very generic and produces a large number of false
positives [5], or the analysis is too specific and results in many
false negatives. Additionally, static analysis techniques based on
program analysis usually target a specific problem domain, such
as the C, PHP, or Java programming language, or alternatively
binary code. Unfortunately, commodity networking equipment
typically contains an amalgamation of various programs and
scripts, written in a variety of compiled or interpreted pro-
gramming languages. Oftentimes, custom modifications are
even made to the language runtime to cater to the unique
requirements of embedded systems.

To overcome the shortcomings of previous work in this area,
we leverage software-based full system emulation to enable
large-scale and automated dynamic analysis for commodity
embedded firmware. Since our approach does not rely on
physical hardware to perform the analysis, it scales with
additional computational resources. Additionally, our full
system emulation approach transparently provides dynamic
analysis capabilities, regardless of the programming language
used to develop a specific application or script. Furthermore, we
inherit the precision of other dynamic analysis techniques—if
the analysis finds that a firmware image contains a vulnerability,
then it provides actionable results in the form of a successful
exploit. Finally, we address a number of challenges that are
characteristic for embedded devices, such as the presence of
various hardware-specific peripherals, storage of persistent con-
figuration in non-volatile memory (NVRAM), and dynamically-
generated configuration files.

We implemented FIRMADYNE to demonstrate our ap-
proach to automated dynamic analysis. Using firmware image
files distributed on vendor support websites, we automatically
unpack the contents to identify the kernel and extract the
filesystem. Since the majority of these extracted firmware are
Linux-based, we initially focus on support for Linux-based
firmware by pre-compiling modified Linux kernels. Using
the QEMU [4] full system emulator, we are able to boot our
instrumented kernels with the extracted filesystem from the
original firmware images. In order to collect a dataset of these
firmware images, FIRMADYNE includes a web crawler that
automatically downloads metadata and firmware images from
various vendor websites, which are then fed into the dynamic
analysis system.

However, even with full system emulation, an emulated
environment must be configured correctly to interact with the
network interfaces of the guest firmware. Therefore, our system
initially emulates the guest in an isolated network environment,
and monitors all network interactions to infer the correct
configuration for subsequent analyses. Once this information
is collected, FIRMADYNE will re-configure the emulated
environment with the inferred network configuration, enabling
network interaction between the emulated guest firmware and
the analysis host.

With the aid of our analysis and introspection capabilities,
we identified 14 previously-unknown vulnerabilities for which
we were able to manually develop proof-of-concept exploits.
Of these, across our dataset of 23,035 firmware images

gathered from 42 device vendors, we identified 69 vulnerable
firmware images spanning at least 12 distinct products from
the 9,486 firmware images that were successfully extracted.
Since the process of emulating and testing firmware images in
FIRMADYNE is automated, it was straightforward to integrate
a subset of the existing exploits from the popular Metasploit
Framework [2].

Using these results, we observe that the most prolific exploit
affects the firmware of up to five different vendors, and the most
effective exploit affects 10% of all network inferred firmware
images in our dataset. While code-reuse of vulnerable open-
source applications is one explanation, our attacks also affect
applications whose source is not publicly available, suggesting
that code-sharing and common upstream manufacturers (OEMs)
are quite prevalent.

To summarize, the contributions of this work are as follows:

• We present FIRMADYNE, our implementation of an
automated and scalable dynamic analysis technique specif-
ically designed to accurately identify vulnerabilities in
Linux-based embedded firmware (§II).

• Our implementation of FIRMADYNE addresses char-
acteristic challenges of embedded systems, such as the
presence of hardware-specific peripherals, usage of non-
volatile memory (NVRAM), and creation of dynamically-
generated files (§IV).

• We gathered a dataset of 23,035 firmware images down-
loaded from 42 different vendors, and evaluated FIR-
MADYNE on the 9,486 firmware images that were
successfully extracted, using a set of 14 previously-
unknown and 60 known exploits (§V).

• In support of open science, we make our system available
to the research community under an open-source license
to encourage further research into embedded systems.
For more information, please see https://github.com/
firmadyne/.

II. OVERVIEW

In this section we describe the design of various components
that comprise FIRMADYNE, and our motivations for such an
architectural design.

A. Components

As depicted in Fig. 1, FIRMADYNE consists of four major
components.

1) Crawling Firmware: The first and largely independent
component is a web crawler, which downloads firmware images
from vendor websites. At present, we support 42 device vendors
(see §IV-A). We manually wrote parsing templates for each of
these websites, allowing us to distinguish between firmware
images and other binary content. This targeted crawling effort
provided us with metadata for each gathered firmware image,
including information such as the build date, release version,
and links to Management Information Base (MIB) files for
the Simple Network Management Protocol (SNMP). Such
metadata proved useful for our automated analyses and exploit
development (see §V-B3). For dynamic websites that were
difficult to crawl automatically, we instead crawled the vendor’s
FTP site, at the expense of no metadata.
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Fig. 1: Architectural diagram of FIRMADYNE showing
the emulation life-cycle for an example firmware image, as
described in §II-A.

2) Extract Firmware Filesystem: In the second step, FIR-
MADYNE uses a custom-written extraction utility built around
the binwalk [1] API to extract the kernel (optional) and the
root filesystem contained within a firmware image (see §IV-B).

3) Initial Emulation: Once a filesystem is extracted, FIR-
MADYNE identifies the hardware architecture of the firmware
image; in Fig. 1, we have chosen MIPS Little-Endian
as an example. Then, our system uses a pre-built Linux kernel
in an instance of the QEMU full system emulator that matches
the architecture, endianness, and word-width of the target
firmware image. Currently three combinations are supported:
little-endian ARM, little-endian MIPS, and big-endian MIPS.
An initial emulation is performed to infer the system and
network configuration, shown as three IP address assignments
to eth0, eth1, and eth2 for the example in Fig. 1. This
is achieved by intercepting system calls to the filesystem,
networking, and other relevant kernel subsystems.

4) Dynamic Analysis: The forth and final step can be
repeated for any dynamic analysis supported by FIRMADYNE.
To this end, the environment is dynamically reconfigured to
match the expectations of the firmware image (see §IV-C)
as inferred in the previous step. Note that FIRMADYNE
is designed for easy extensibility to include new dynamic
analyses or exploits. The results of each individual analysis are
aggregated in a database for ease of inspection. In the example
above, shown in Fig. 1, a command injection vulnerability is
being tested on the target firmware image.

To illustrate this versatility, we have developed three
vulnerability detection passes, which are able to assist in
finding vulnerabilities and precisely identify whether a given
exploit succeeds by monitoring events from our instrumented
kernel. These passes helped us detect 14 previously unknown
vulnerabilities, which were automatically confirmed to affect
69 firmware images, based on proof-of-concept exploits that
we developed (see §V-B). We further demonstrate the flexibility

of FIRMADYNE by seamlessly integrating 60 known exploits
mostly from the popular Metasploit [2] exploit framework. In
total, both vulnerability types affect 887 firmware images from
our dataset.

B. Motivation

Dynamic analysis targeting embedded system firmware
addresses a variety of design points in the abstraction hierarchy
of embedded systems. We discuss a selection of potential
vantage points for such analysis, illustrate challenges and
shortcomings, and argue why dynamic analysis based on full
system emulation is the most promising approach to tackle this
challenge.

1) Application-Level: Perhaps the most straightforward
approach is to statically extract application-specific data, and
execute it natively with a supported application. For example, it
is possible to copy the webpages served by a web server within
an embedded system, and serve the content using a regular
web server such as Apache. Unfortunately, this approach has
multiple drawbacks that are incompatible with our design goal
of creating a generic platform for dynamic analysis of embedded
firmware.

An analysis of the firmware images in our dataset shows
that many of these contain webpages which rely on non-
standard extensions to server-side scripting languages (e.g.,
PHP) for access to hardware-specific functionality, such as
NVRAM values. For example, hundreds of images in our
dataset make use of the custom functions get_conf()
in PHP and nvram_get() in ASP.NET to obtain device
configuration values. Unfortunately, this functionality is a
custom addition to the web server that is not supported by
their upstream open-source counterparts. Additionally, other
firmware images do not place these webpages on the filesystem,
but instead embed their HTML content within the binary of a
custom web server.

Finally, an analysis approach focused on application-data
can only detect vulnerabilities within the application-specific
data (e.g., command injection vulnerabilities in PHP files), but
not those present within the original application or other system
components.

2) Process-Level: Another feasible approach for analyzing
embedded systems is to emulate the behavior of individual
processes within the context of the original filesystem. This
can be achieved by executing QEMU in user-mode as a single
process emulator, constrained using chroot to the original
filesystem. Thus, one could simply launch the original web
server from the firmware image in QEMU, and then that process
would emulate the router web interface.

Unfortunately, this approach only partially obviates the
concerns mentioned above. While an application would be
able to execute within the context of the filesystem, specific
hardware peripherals (e.g., NVRAM) are still unavailable. As
a result, when an application attempts to access the NVRAM
peripheral via /dev/nvram, it will likely terminate in error.

Similarly, minor differences in the execution environment
can have a significant effect on program behavior. For example,
the alphafs web server used by multiple firmware images
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verifies hardware-dependent product and vendor IDs before
accessing NVRAM. If these values are not present at prede-
termined physical memory addresses, the web server ceases
operation and terminates with an error message. To this end, the
web server uses the mmap() system call to access memory via
/dev/mem, and checks specific offsets for the ProductID
and VendorID of supported EEPROM chips.

Emulating such behavior with a user-mode emulator would
be complex, as the emulator would need to track file handles and
system calls that map memory to determine program behavior.
Then, the emulator would need to identify the semantic
definition of various memory addresses, and replace the values
as appropriate (e.g., a valid ProductID and VendorID).

Additionally, due to limited write cycles on the primary
storage device, many firmware images mount a temporary
memory-backed filesystem at boot for volatile data. This
filesystem is mounted and generated dynamically. As a result,
the directories /dev/ and /etc/ may be symbolic links to
subdirectories within the temporary filesystem, thus appearing
broken when examined statically. For example, the firmware
for the D-Link DIR-865L wireless router uses a startup
script to populate configuration for applications, including the
lighttpd web server. This configuration file is then passed to
the web server binary with the ‘-c’ command line argument.
As a result, simple dynamic emulation of the lighttpd binary
will fail, even with the original filesystem in place.

These types of environmental differences can have a
significant effect on the presence of vulnerabilities. For example,
many information disclosure vulnerabilities can simply be fixed
with proper access control policies. Likewise, the effect of
a directory traversal attack on a web server can be greatly
affected by the system configuration.

Although this approach is clearly more accurate than the
previous approach, it should be apparent that it suffers from a
number of shortcomings due to low emulation fidelity. Without
precise knowledge of the runtime system environment, the
host environment can inadvertently affect dynamic analysis of
individual processes by altering program execution.

3) System-Level: In comparison, a system-level emulation
approach is able to overcome the aforementioned challenges.
Expected interfaces to hardware peripherals will be present,
allowing their functionality to be gracefully emulated. Accurate
emulation of the system environment permits dynamically-
generated data to be created in the same manner as on the real
device. All processes launched by the system can be analyzed,
including various daemons responsible for protocols such as
HTTP, FTP, and Telnet.

During the design process, we explicitly chose full system
emulation as the basis for FIRMADYNE for these reasons.
By leveraging the built-in hardware abstraction provided by
the kernel, we replace the existing kernel with our modified
kernel specifically designed and instrumented for our emulation
environment. Then, in conjunction with a custom user-space
NVRAM implementation, we boot the extracted filesystem
and our pre-built kernel within the QEMU full system emulator.
Otherwise, booting the original kernel would result in a fatal
execution crash, since it is only compiled to support a specific

hardware platform. Using the system boot sequence provided
by the init and rcS binaries on the original filesystem, we
are able to initialize user space to a state consistent with the
original device, despite platform changes.

Our results (see §V-A) show that this approach is successful
for initial emulation of over 96.6% of all Linux-based firmware
images in our dataset. This is likely due to the stable and
consistent interface between user-space and kernel on Linux
systems, with the exception of custom IOCTL’s introduced by
vendor-specific kernel modules. In fact, Linux kernel developers
will revert kernel changes that break backwards-compatibility
for user-space applications; for example, programs built for
pre-0.9 (pre-1992) kernels will still function correctly even on
the latest kernel releases.1

However, this does not hold for kernel modules; indeed,
one of the drawbacks of our current implementation is the lack
of emulation support for out-of-tree kernel modules located on
the filesystem and so differences in kernel version may result
in system instability. Nevertheless, our dataset shows that such
support is generally not necessary, as more than 99% of all
out-of-tree kernel modules within the firmware images in our
dataset are not useful for our system (§V-A3). One major reason
is because newer kernels, such as those that we build, provide
in-tree equivalents for functionality previously developed as
out-of-tree extensions. In particular, 58.8% of out-of-tree kernel
modules are used to implement various networking protocols
and filtering mechanisms that may not have been present in
older kernels, and 12.7% provide support for specific hardware
peripherals. For example, older 2.4-series mainline kernels
lacked netfilter connection tracking and NAT support for
various application-specific protocols such as TFTP, G.323,
and SIP, which became available in-tree around kernel version
2.6.20. In comparison, the third-party NetUSB kernel module,
which was recently identified to contain a remotely-exploitable
buffer overflow vulnerability, comprises less than 0.2% of all
kernel modules from our dataset (§V-A3).

III. CONCEPT

This section provides an overview of the concept behind our
dynamic analysis framework for Linux-based firmware images.
For specific challenges encountered and implementation details,
please see §IV.

A. Architecture

As shown in Fig. 1, our system features a firmware
repository server that is used to store the binaries corresponding
to each firmware image and a database that keeps track of
information pertaining to each firmware image. This includes
the extraction status, architecture, brand of each image, as well
as each file within a given image.

A set of virtualized worker nodes are used to extract the
root filesystem and kernel (optional) from each firmware image.
Throughout this process, the database is updated with the
current experiment progress. If the extraction is successful,
the firmware repository will cache the archived filesystem.
Next, these workers enter the learning phase, where firmware

1https://www.kernel.org/doc/Documentation/stable_api_nonsense.txt
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images are assigned a default configuration and the networking
interactions are recorded. This allows our system to infer the
correct emulated network environment. Finally, the workers
enter the analysis phase, where each firmware image is emulated
with the inferred network environment, and individual analyses
are performed.

B. Acquisition

In order to gather a representative dataset of firmware
images, we developed a custom web crawler. Instead of using
a blind crawling methodology, we wrote smart parsers for the
support pages of each of our 42 preselected vendors (§A). This
allowed us to distinguish between firmware updates and unde-
sired binaries such as drivers, configuration utilities, and other
binaries. Additionally, with a better semantic understanding
of the target website, we recovered important metadata about
each firmware image, such as vendor, product name, release
date, version number, changelog, etc.

Where applicable, this was supplemented with probable
firmware images that were mirrored from the FTP websites
of target vendors. Although this latter source of firmware was
less rich in metadata, it provided us with additional binaries
that were not directly accessible for all end-users, including
betas and test binaries with limited releases. A few brands of
firmware images, for which it was difficult to automate, or
when the vendors did not provide direct firmware downloads
for end-users, were gathered by hand.

C. Extraction

We developed a custom extraction utility using the API
of the binwalk firmware extraction tool to recover the root
filesystem and (optionally) kernel from each firmware image.
These were normalized by storing them as compressed TAR
archives within our firmware repository.

D. Emulation

Once the root file system has been extracted from a firmware
image, FIRMADYNE performs a series of analysis steps to
infer the system configuration expected by the firmware image.

First, we examine the ELF header of binaries located within
the extracted root filesystem to identify the target architecture
and endianness. For each firmware image, we use the QEMU
full system emulator for the corresponding architecture to boot
the extracted filesystem with a matching kernel. Currently, we
have pre-compiled kernels for ARM little-endian, MIPS little-
endian, and MIPS big-endian platforms, as our data shows that
these architectures constitute 90.8% of our dataset (§V-A1).

Next, during the initial emulation phase, the system is
executed in a special “learning” mode, in which our modified
kernel records all system interactions with the networking
subsystem, including IP address assignments for individual
network interfaces.

Finally, after collecting this information, FIRMADYNE
enters the actual emulation phase, in which a matching
network environment is configured to communicate with the
emulated firmware. To verify successful network configuration,

FIRMADYNE launches the emulated firmware image and
performs a series of network connectivity checks.

E. Automated Analyses

We implemented three basic automated analysis passes
within our dynamic analysis framework in order to demonstrate
the effectiveness of our system. These contributed to our
detection of 14 previously-unknown vulnerabilities that affect
69 firmware images, and a total of 74 vulnerabilities that affect
887 firmware images (see §V).

IV. IMPLEMENTATION

This section discusses the implementation behind each of
the components mentioned in §II-A and §III.

A. Acquisition

Our custom web crawler was developed using the Scrapy
framework, with an individual spider written for each of
the 42 vendors in our dataset. To increase representativeness,
our dataset includes vendors for networking products ranging
from consumer to professional network equipment, such as
IP cameras, routers, access points, NAS’s, smart TV’s, cable
modems, satellite modems, and even third-party or open-source
firmware. We created individual parsers for the support pages
of each vendor using XPath selectors to enumerate and expand
specific elements of input webpages. In addition, we also
attempted to crawl multiple geographic locations of each
vendor’s website, including United States (English), China
(Chinese), Russia (Russian), European (English), Germany
(German), and South Africa (English).

Some vendors that made heavy use of dynamically-
generated content on their websites, such as D-Link and ZyXEL,
were crawled through their FTP mirror site instead. Only
FTP files that appeared relevant were downloaded, which was
generally limited to the following filename extensions: img,
chk, bin, stk, zip, tar, sys, rar, pkg, and rmt. Other
vendors, such as Cisco, which made their website difficult to
automatically crawl, or limited most firmware downloads to
customers with valid support contracts, were manually crawled.
Supported metadata fields that were automatically gathered
from vendor websites include the product name, vendor name,
version, build, date, changelog, SNMP MIB file, source code
URL, and firmware image URL. This allows us to distinguish
between multiple products that share the same firmware image,
since we deduplicate downloaded firmware image binaries.
However, not all vendors had such information available, and
no metadata was available for vendors crawled through FTP
or manually.

B. Extraction

Through manual experimentation, we determined that the
built-in recursive extraction mechanism (“Matryoshka”) within
binwalk was insufficient for our purposes. In particular, this
extraction was vulnerable to path explosion by attempting
to recursively extract compressed data from within an ELF
executable or every file within a filesystem, and not guaranteed
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to terminate, especially in the presence of false positive
signature matches.

Instead, we developed a custom goal-driven extraction utility
using the binwalk API that minimized disk space and runtime
by terminating when our extraction goals were achieved; namely
obtaining root filesystem and (optionally) kernel from within
each firmware image. In addition, we implemented a set of
heuristics for early detection of non-firmware files, which
would otherwise waste computational resources. This included
blacklisting input files that were any type of structured binary,
including PE32 executables for Windows, ELF executables for
Linux, and universal binaries for Macintosh, as well as bytecode
and relocatable objects. Other common formats that were
excluded included PDF files and Microsoft Office documents,
which would otherwise appear as compressed archives that
require recursive extraction.

After blacklist verification, the extraction process used a set
of priority-ranked signatures that were executed sequentially in
the order of confidence. These signatures can be categorized
as follows: archive formats, firmware headers, kernel magic
or version strings, UNIX-like root filesystems, and finally
compressed data. Matches for archive formats or compressed
data were then extracted recursively. We verify that UNIX-like
root filesystems are successfully extracted by checking for the
presence of at least four standard root directories from a subset
of the Filesystem Hierarchy Standard2.

Our method allowed us to reduce the effect of false positive
signature matches by prioritizing higher-confidence signature
matches (e.g., firmware headers) over more generic signature
matches (e.g., compressed GZIP data). For example, if upstream
binwalk detects compressed data within the kernel image of
a firmware image and recursive extraction is enabled, it will
waste resources attempting to fully extract this data.

Another improvement that we made to the extraction process
was utilizing the third party jefferson and sasquatch
extraction tools for JFFS2 and SquashFS filesystems, re-
spectively, which can be difficult to extract. This is because the
userspace extraction utilities provided by filesystem developers,
jffsdump and unsquashfs, frequently fail to extract real-
world filesystems of these types.

In part, this is because these user-mode extraction utilities
are rarely updated and can lag behind the in-kernel filesystem
code in terms of filesystem support. More importantly, many
device manufacturers have modified existing compression
algorithms or even implemented new compression algorithms
for these filesystems, making their variants incompatible with
other implementations.

To resolve this problem, other firmware extraction utilities
such as bat and firmware-mod-kit rely on a set of
heuristics and precompiled unsquashfs binaries gathered
from the GPL source code releases for various routers. However,
this approach is incomplete and ineffective, as maintainers for
these extraction utilities need to manually compile new binaries
and implement the appropriate heuristics.

2http://refspecs.linuxfoundation.org/FHS_3.0/fhs-3.0.pdf

In contrast, we utilize tools that are specifically written
to extract the contents of these modified filesystems from
userspace. sasquatch, which was developed by the author
of binwalk, is designed to support as many modified
SquashFS implementations as possible by adapting to changes
in compression algorithms, and recognizing the structure of
SquashFS filesystems instead of specific magic strings.

During this process, we identified a number of bugs and
made improvements to both binwalk and jefferson,
which were submitted to the respective upstream projects. The
majority of our submitted patches have already been merged
into the official release, and some are still pending maintainer
review.

Although these improvements contribute to our success
rates, not all firmware images can be extracted by our current
implementation. For example, some vendors only distribute
partial firmware images for their products, preventing us from
reconstructing the root filesystem. Other vendors distribute
firmware images with multiple embedded or partial filesystems,
which require additional logic to reassemble partial filesystems,
or filesystems mounted on top of one another. Furthermore,
other vendors distribute encrypted firmware images, firmware
images within a binary updater executable, non-Linux-based
firmware images, or Linux-based firmware images with un-
recognized filesystems, all of which we do not support. As a
result, these images are categorized as unknown in Table II.

C. Emulation

1) NVRAM: From a cursory inspection, at least 52.6% of
all extracted firmware images (4,992 out of 9,486) access a
hardware non-volatile memory (NVRAM) using a shared library
named libnvram.so to persist device-specific configuration
parameters. For routers and other networking equipment,
this includes settings shown on the web-based configuration
interface, which can include wireless network settings, network
adapter MAC addresses, and access credentials for the web
interface.

Since this peripheral is typically abstracted as a key-
value store, we developed a custom userspace library that
intercepts calls to NVRAM-related functions, such as const
char *nvram_get(const char* key) and int
nvram_set(const char* key, char *val), which
are respectively used to get and set parameters from NVRAM.
By modifying the system environment passed by the kernel
to the init binary to include this library via LD_PRELOAD,
we ensure that all userspace processes inherit the same
environment, since they are child processes of init. A
temporary mountpoint on the filesystem is used as the root of
our key-value store, allowing us to reimplement this interface
in userspace without emulating hardware-specific peripherals.

During testing, a common challenge we encountered was
that our dataset of firmware images was compiled with different
C toolchains, some of which we do not have access to. As
shown in §V-A, this diversity was problematic for our shared
library, since all dynamically-loaded ELF binaries must specify
the path to the dynamic loader for which they were compiled,
as well as the filenames of dynamically-loaded dependencies,
which were different depending on the system.
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Initially, we attempted to resolve this problem by compiling
our NVRAM implementation statically. However, we soon
discovered that not only did these C runtime libraries use
incompatible implementations of built-in C features such as
thread-local storage, but they were also not built as position-
independent code (PIC) to support static compilation. As a
result, we could neither build our NVRAM library statically
against a single C runtime library, nor could we dynamically
build our shared library specifically for each firmware image.

Fortunately, ELF dynamic loaders for Linux systems support
lazy linking, which allows the resolution of external function
symbols to be delayed until usage. Typically, the compiler
implements this by placing stub code within the Procedure
Linkage Table (PLT) that initializes the Global Offset Table
(GOT) entry for a given imported function when the function
is called for the first time.

Since the ELF loader uses a global symbol lookup scope
during resolution [12], we were able to compile our NVRAM
library with the -nostdlib compiler flag, delaying resolution
of external symbols until after the calling process had already
loaded the system C runtime library. Effectively, this allowed
our shared library to appear as a static binary while dynamically
utilizing functions made available by the calling process,
including the standard C runtime library.

Another challenge we encountered was the fact that our
NVRAM implementation was not useful without a set of system-
specific default values. Unfortunately, these values are normally
embedded within the hardware NVRAM peripheral at the
factory, and having a hardware dependency for our system
would preclude our goal of performing a large-scale analysis.
Simply returning NULL or the empty string was also insufficient,
as this would eventually cause the system to crash at startup or
enter an erroneous state, e.g., by calling itoa() or strcpy()
on a NULL pointer, or inserting bad arguments to program
invocations such as ifconfig. Initially, we attempted to
hardcode a set of default NVRAM values into our library, but
we soon discovered that this was infeasible since an average
firmware image can reference hundreds of NVRAM keys at
startup.

After manually examining firmware images that failed to
emulate, we realized that most images embedded a set of default
NVRAM values into a few common locations, e.g., within a text
file named /etc/nvram.default, /etc/nvram.conf,
or /var/etc/nvram.default. Others would export a
symbol router_defaults or Nvrams of type char
*[] within built-in libraries such as libnvram.so or
libshared.so. We were able to access these symbols by
declaring them as weak references and checking if they were
initialized, since we could not utilize libdl.so (not typically
loaded by the calling executable) or leave them as regular
references (external data symbol resolution is not lazy).

Unfortunately, our NVRAM emulation implementation does
not work for all firmware images. This can be due to a
wide variety of reasons. For example, some images may call
NVRAM-related functions that we do not emulate; others
may expect different semantics from these emulated functions
in terms of parameter passing, return values, or caller/callee
memory allocation; some others may implement NVRAM as a

custom data structure on a MTD partition, which we currently
cannot initialize to a valid state. We believe failures in NVRAM
emulation are likely to be a significant contributor to the drop
in emulation progress between columns two and three of Fig. 2.
As an inconvenient truth, improving the emulation success
rates or fixing network configuration detection for firmware
images from, e.g., Tomato by Shibby, is a manual process. It
requires an analyst to manually examine system logs in order
to identify and classify emulation failures based on root cause,
then make the changes that are necessary to support these
images. Oftentimes, this may be a cyclic process, as there can
be multiple causes of emulation failure.

2) Kernel: As mentioned in §II-B, we do not utilize the
extracted kernel, but instead replace it with our own custom
pre-built kernels for the ARM and MIPS architectures, which
together account for 90.8% of our dataset.

During the kernel compilation process, we implement our
analysis within our custom Linux kernel module that is used to
aid debugging and emulating the original system environment.
By hooking 20 system calls using the kernel dynamic probes
(kprobes) framework, we are able to intercept calls that
alter the execution environment. This includes operations
such as assigning MAC addresses, creating a network bridge,
rebooting the system, and executing a program, all of which are
monitored by our framework to properly configure the emulated
networking environment. This functionality can also be used to
provide automatic confirmation of vulnerabilities, especially in
conjunction with predefined poison values (e.g., 0xDEADBEEF,
0x41414141) that should never appear in system calls.

Since some firmware images expect certain filesystems
to be mounted at boot, e.g., /dev or /proc, we use the
rdinit kernel parameter to run a custom script that initializes
these filesystems before init is executed. Additionally, we
load the nandsim kernel module at startup, which emulates
the memory technology device (MTD) partitions accessed
via /dev/mtdX that are frequently used on these embedded
devices.

In addition, since our emulation of NVRAM is volatile, we
prohibit the guest from rebooting the system and emulate this
behavior by restarting the init process. This kernel module
also emulates vendor-specific or device-specific interfaces, such
as custom device nodes, procfs entries, or non-standard
IOCTL’s by returning success with a generic stub.

For the MIPS architecture, we build separate kernels for
big-endian and little-endian systems, both targeting the MIPS
Malta development platform, which is well-supported by both
QEMU and the Linux kernel. In fact, this platform even supports
MIPS 64-bit code, although we have not implemented support
for it since it comprises less than 0.6% of our dataset. This
kernel is currently at version 2.6.32.68, which is a long-term
support release, and includes our backported commits for full
kprobes support.

For the ARM architecture, we support only little-endian
systems, since big-endian systems comprise less than 1.1% of
our dataset and are unsupported by mainline QEMU3. We target
the ARM Versatile Express development platform, which uses

3https://lists.gnu.org/archive/html/qemu-devel/2014-06/msg03257.html
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an emulated Cortex-A9 (ARMv7-A) processor. This platform
offers better hardware compatibility than the standard ARM
Versatile Platform Baseboard development board, which uses an
emulated ARM926 (ARMv5) processor that does not support
newer ARM instructions found in some firmware images.
Unfortunately, this platform supports only up to one emulated
Ethernet device due to the lack of an emulated PCI bus in
QEMU. In the future, we plan to switch to the ARM Virtual
Machine platform, which supports multiple virtualized devices
via VirtIO, but this will require a kernel upgrade from 3.10.92
to 4.1.12, a newer long-term support release that fully supports
VirtIO functionality on ARM.

As the above discussion suggests, adding support for a
new hardware architecture, such as x86, is not an automated
process. In particular, selecting a supported hardware platform
in QEMU can be tricky, as support for either VirtIO or an
emulated PCI bus is typically required to attach more than
one virtual networking interface. At the same time, the chosen
hardware platform in QEMU must be supported by the selected
version of the Linux kernel, which needs to be sufficiently
up-to-date for kprobes and VirtIO support. Developing a
compatible configuration for the kernel can also be tricky, as
we need to enable all the features that off-the-shelf firmware
relies on. Furthermore, we need to rebase our custom kernel
module implementation to the chosen kernel version, which
may require manual compatibility fixes to account for internal
kernel API changes.

3) System Configuration: Since we are mainly interested in
firmware that implements network functionality, such as routers,
network attached storage, or surveillance equipment, we need to
make device-specific changes to the emulated hardware. Ideally,
all network devices would automatically configure themselves
via the DHCP protocol. Unfortunately, certain network devices,
especially routers and some managed switches, are designed
to provide DHCP services to other devices. Additionally, these
devices tend to have different numbers of network interfaces;
for example typical consumer routers have at least four Ethernet
interfaces, in comparison to just one on an IP camera.

Our system initially executes each emulated firmware
in a “learning” phase for 60 seconds. In this phase, the
emulator is configured with the default hardware peripherals
for the emulated target platform (MIPS Malta or ARM Virtual
Express), plus up to four emulated network adapters, using
the built-in socket networking backend within QEMU. During
this time, information is gathered about the expected network
configuration. In particular, we keep track of IP addresses that
are assigned to network interfaces, as well as the presence
of IEEE 802.1d bridges used to aggregate multiple network
interfaces. Additionally, we check for tagging and separation
of Ethernet frames using IEEE 802.1Q VLANs, which is used
by some routers to segregate wireless guest networks from the
physical network.

This information is then fed back into our emulation
framework to develop a more accurate QEMU configuration
for this system. We instantiate a network tap (TAP) device on
the host, which is associated with one of the emulated network
interfaces within the firmware (e.g., eth0) that correspond to
a LAN interface. For firmware images that use VLANs, we

assign a corresponding VLAN ID to the TAP interface, in order
to communicate successfully with emulated network services.
Next, the TAP interface is configured with an IP address that
resides in the same subnet as the IP address assigned to the
emulated interface by the firmware. Finally, we check for
network connectivity by sending ICMP requests and performing
a port scan using the Nmap [3] utility.

4) QEMU: Aside from NVRAM, we expect embedded
systems to rely on other hardware-specific peripherals such as
watchdog timers or additional flash storage devices. Unfortu-
nately, some device manufacturers do not follow good software
engineering practices and implement such functionality directly
in userspace, instead of using a device driver in kernelspace.

As a result, we cannot simply abstract away these devices
and cleanly emulate this behavior within our custom kernel
module. For example, the alphafs webserver mentioned in
§II-B maps part of physical memory from the /dev/mem
device node directly into its own address space. It expects con-
figuration information for the flash memory chip to be mapped
at 0x1e000000, with the VendorID and ProductID
identification parameters matching a chip supported by the
software; otherwise it simply terminates.

To support the 138 affected firmware images in FIRMA-
DYNE, we modified the appropriate sixteen bytes in QEMU’s
source code for the emulated platform flash device to respond
with known good values.

D. Automated Analyses

Currently, we have implemented three basic automated
dynamic analysis passes within our system. Each is registered
as a callback within our system, such that when a firmware
image enters the network inferred state, registered callbacks
are triggered sequentially. These contributed to our detection of
14 previously-unknown vulnerabilities that affect 69 firmware
images, and 74 known vulnerabilities that affect 887 firmware
images (see §V).

1) Accessible Webpages: To help detect various information
disclosure, buffer overflow, and command injection vulnera-
bilities, we wrote a simple analysis that looks for publicly
accessible webpages from the LAN interface of firmware
images. A custom-written Python test harness iterates through
each file within the firmware image that appears to be served
by a webserver (e.g., located within /www/), verifies that it is
not a static resource (e.g., *.png, *.css, *.js), and attempts to
access it directly over the web interface.

Responses that contained non-2xx HTTP status codes were
ignored, since these were typically inaccessible web pages
(403/404), web pages that required authentication (401), or
invalid responses caused by socket timeouts or incomplete reads.
Successful responses that contained redirects were flagged as
lower confidence results, since we experimentally determined
that a large number of these were used to implement soft-
authentication pages.

Perhaps as a more user-friendly authentication mechanism,
these soft-authentication pages checked whether client requests
were authenticated using a client cookie or server IP address
log instead of the basic or digest authentication mechanisms
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built-into the HTTP protocol (which would return 401). Thus,
these pages were marked with lower confidence, while all other
web pages were marked with regular confidence. These results
were aggregated across our firmware dataset to determine which
URLs were most accessible, and then prioritized for further
analysis in order of popularity.

2) SNMP Information: We were curious about the preva-
lence and security of Simple Network Management Protocol
(SNMP) implementations across our dataset, and so we wrote a
basic analysis using our framework to dump all unauthenticated
SNMP information from the “public” and “private” communi-
ties using the snmpwalk tool. Using MIB files gathered by
the crawler, the results for a subset of these were manually
interpreted to check for the presence of sensitive information.
The corresponding object identifiers (OIDs) were recorded, and
a simple proof-of-concept was developed for each, based on
whether information was returned when the OID was queried.

3) Vulnerabilities: Using 60 known exploits, mostly from
the Metasploit Framework, we initially checked all firmware im-
ages across our dataset for known security vulnerabilities. Each
exploit was executed sequentially, with a remote shell payload
if applicable, then the corresponding exploit log was checked
for success. This provided a lower-bound on the number of
vulnerabilities within our dataset, since an exploit may fail even
if a vulnerability is present. The tested vulnerabilities were
manually selected for relevance to applications and daemons
known to be present on embedded devices, and spanned various
exploit categories such as buffer overflow, command injection,
information disclosure, and denial of service.

For the new vulnerabilities that we discovered, we manually
developed proof-of-concepts exploits, which leveraged our
predefined poisoned arguments such as 0xDEADBEEF. Then,
we specified a verification condition for each exploit, which
was typically the presence of the poisoned argument in our in-
strumented kernel log; other examples included a segmentation
fault at 0x41414141 or a WPS PIN in a webpage.

E. Additional Capabilities

We also developed a number of additional capabilities that
assisted the development and debugging of our emulation
framework and exploits. These include dynamic tracing of
code execution, which can be imported into existing reverse
engineering tools, such as IDA Pro. Our custom kernel was
modified to disable inlining of the context_switch()
function, which allowed the emulator to trace the execution
of given userspace processes. Additionally, at startup we
also launch a special console application on the device node
/dev/ttyS1, which is forwarded by QEMU to a temporary
socket on the host system. This provided us with a convenient
mechanism for modifying the emulated firmware image at
runtime, especially if no default console is launched.

V. EVALUATION

In this section, we evaluate our implementation of FIR-
MADYNE. First, we examine the composition of our input
dataset, and analyze its effect on the emulation fidelity at every
stage in the emulation pipeline. Second, we demonstrate how
we leveraged our system to identify 14 previously-unknown

vulnerabilities within the collected firmware samples. Using
proof-of-concept exploits that we developed for each of these
vulnerabilities, we use our system to assess their prevalence
and impact on our dataset. Finally, we demonstrate the analysis
flexibility of our system by supplementing it with 60 known
exploits, mostly from the Metasploit Framework [2], and assess
the prevalence and impact of these known exploits on our
dataset.

It is important to note that the distribution of firmware
images across product lines and device vendors is not uniform,
and thus may skew interpretation of the results. In particular,
although we attempt to scrape metadata about the model number
and version number of each firmware image, this information
is not always available, nor is it present in a format that can
easily establish a temporal ordering. For example, vendors may
re-release a given product with different hardware, or release
a product with different hardware or firmware in each region,
preventing direct comparisons between two firmware images
with the exact same model. As a result, it is difficult to identify
which firmware images are deprecated, and which firmware
image(s) is (are) the current version(s).

Furthermore, it is difficult to establish a mapping between
firmware images and products, since there is not a direct one-
to-one correspondence. For example, some vendors, such as
Mikrotik, distribute a single firmware image for each hard-
ware architecture whereas other vendors, such as OpenWRT,
distribute a single firmware image for each hardware chipset.
Additionally, some vendors, such as QNAP and Synology,
develop a master firmware image that is only lightly customized
for each product in terms of hardware support and product
strings, whereas other vendors, such as OpenWRT, distribute
different binary releases of the same firmware image using
various encapsulation formats. Given two different firmware
binaries, this raises the question of how functionally identical
they may be, which we do not address. Nevertheless, we attempt
to provide a lower-bound on the number of affected products,
where possible.

A. Statistics

1) Architectures: For all firmware images with extracted
root filesystems, we were able to identify the architecture of
the corresponding firmware image by examining the format
header of the busybox binary on the system, or alternatively
binaries in /sbin/ if we could not locate busybox.

Table I shows that the majority of our firmware images are
32-bit MIPS (both big-endian and little-endian), which consti-
tute approximately 79.4%. The next most popular architecture
type is 32-bit little-endian ARM, which constitutes approx-
imately 8.9%. Combined, these two architectures constitute
90.8% of all firmware images, with the remainder forming
the little-tail of this distribution, suggesting that additional
development effort to support the remaining architectures would
require some other strong justifications.

2) Operating Systems: By combining our statistics for root
filesystem extraction and signature matches for the Linux and
VxWorks kernels, we noticed that the largest proportion of
our firmware images were UNIX-based at 48%, as shown in
Table II. If the filesystem of a firmware image was positively
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identified as UNIX-based, but failures were encountered during
the kernel extraction process, then the image was labeled as
UNIX-like. Potential causes for this include path exploration
constraints, unsupported compression algorithms, or even the
lack of a kernel within the firmware image. Barely 3.5% of
our firmware images were identified as VxWorks, showing that
implementing support for these devices is a low priority.

As discussed previously in the last paragraph of §IV-B,
the unknown firmware images can be attributed to a number
of extraction failures. These include firmware images that
appeared to be Linux-based, but for which we were unable
to reassemble the entire filesystem, extracted only a partial
UNIX-like filesystem, or extracted a filesystem that did not
meet our threshold to be deemed UNIX-like. Some of these
are known to use ZynOS, a proprietary real-time operating
system developed by ZyXEL Communications. ZynOS uses
the ThreadX kernel and an unknown filesystem type, for which
we lack a kernel version signature and filesystem extraction
utility.

Other unknown firmware images are monolithic firmware
images that do not utilize a distinct kernel or filesystem. As a
result, emulating these firmware images would be extremely
difficult without hardware documentation, as chipset-specific
code may be distributed throughout the binary. This type of
firmware image is known to be used by u-blox, which is
included in our dataset.

3) Kernel Modules: Across all of our extracted firmware
images, we performed a basic categorization of all out-of-
tree kernel modules based on filename, shown in Table III.
These numbers indicate that 58.8% of these modules implement
various network-related functionality, such as packet filtering
(iptables, xtables, netfilter, ebtables), protocol
implementations (pptp, ppp, adsl), and interface support
(mii, tun, tap). The next largest subset of 12.7% were used
to provide support for various peripherals, including wireless
adapters (wl, ath9k, sierra), platform chipsets (ar7240,
ar7100, bcm963xx), and various other devices (acos_nat,
pl2303). Many of the remaining kernel modules appeared to
be in-tree kernel modules that were compiled as loadable mod-
ules, including generic USB interface implementations (ehci,
uhci, xhci), filesystems (fat, fuse, ext3), cryptographic
functions (sha512, crypto), and various other miscellaneous
kernel routines (ts_fsm, sch_hfsc). Less than 0.2% of
these kernel modules were identified as the KCodes NetUSB
kernel module, a proprietary USB over IP kernel module that
is known to contain a remotely-exploitable buffer overflow
vulnerability.4

4) Network Services: To assess the prevalence of listening
network services on our firmware image dataset, we used the
nmap network scanning tool to check the 1,971 images that
respond to ICMP echo requests. We scanned all TCP ports with
known services from the nmap-services file, as well as the
continuous port range 1–1024, which is the default scanning
behavior of nmap. The top ten results, shown in Table IV,
indicate that out of the 1,971 devices that were network
reachable, 47.3% likely support a web-based configuration

4https://www.sec-consult.com/fxdata/seccons/prod/temedia/advisories_txt/
20150519-0_KCodes_NetUSB_Kernel_Stack_Buffer_Overflow_v10.txt

Architecture (Endian) # Image(s)
TILE (LE) 1
ARC (LE) 10

Motorola 68k (BE) 10
x86 (LE) 31

MIPS 64-bit (BE) 50
PPC (BE) 84
ARM (BE) 102
x86-64 (LE) 147

Unknown 439
ARM (LE) 843
MIPS (BE) 3,137
MIPS (LE) 4,632

Total 9,486

TABLE I: Breakdown of firmware images by architecture, based
on binary fingerprinting of extracted root filesystems.

Type # Images
Linux 9,379

Unidentified (UNIX-like) 2,187
VxWorks 857
Unknown 10,612

Total 23,035

TABLE II: Breakdown of firmware images by operating system,
based on kernel fingerprinting and root filesystem extraction.

Category # Modules
NetUSB 853

Unclassified 1,384
Cryptography 12,603

USB 30,683
Filesystems 43,271

Miscellaneous 55,344
Peripheral Drivers 64,085

Networking 296,592
Total 504,815

TABLE III: Breakdown of kernel modules by category, based
on path and filename.

# Images TCP Port/Service # Vendor(s)
928 80/http 9
708 23/telnet 7
536 53/domain 6
250 3333/dec-notes 1
188 443/https 7
187 5000/upnp 2
136 1900/upnp 1
162 49152/unknown 4
63 2602/ripd 2
57 5555/freeciv 3

TABLE IV: Breakdown of listening network services by number
of firmware images and number of vendors.
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Fig. 2: Breakdown of firmware images by emulation progress,
colored by vendor.

interface (HTTP or HTTPS). Of these, only 9.5% supported
HTTPS for the configuration interface, which is 19.8% of the
devices that support HTTP.

Remote shell access is supported by 37.4% of devices over
either the Telnet or SSH protocols. Note, however, that SSH
is not among the top ten results; in fact, it ranks 13th at 2.2%,
or 1.9% of the devices that support Telnet. This is worse
than the percentage of devices supporting HTTPS out of the
devices that support HTTP.

Based on the presence of the DNS service, it appears that
at least 27.2% of these firmware images are routers, which
typically act as a local DNS proxy. Another 16.4% ship with
Universal Plug and Play (UPnP) enabled by default, which
allows LAN devices to automatically configure port forwarding
from the WAN interface.

Port 2602 is known to be used by the Routing Informa-
tion Protocol (RIP) protocol, which is typically enabled on
enterprise-class routers for automatic network routing.

According to various customer support forums, ports 3333
and 5555 are known to be open on certain Netgear devices,
although we have not checked our Netgear firmware images
to identify the responsible service. Port 49152 is known to be
the first port in the dynamic port address range forwarded by
various applications through UPnP, though we do not have any
UPnP clients in our network configuration and are uncertain
of the default forwarding state.

5) Emulation Progress: As shown in Fig. 2, of the 8,617 ex-
tracted firmware images for which we identified an architecture,
our system initially emulated 96.6% (8,591) successfully. The
failures can be attributed to a number of causes, including the
lack of an init binary in a standard location (/bin/init,
/etc/init, or /sbin/init), or an unbootable filesystem.
For example, certain images containing Ralink chipsets are
known to name their init binary ralink_init, which we
currently do not support. Likewise, extraction failures discussed

in the last paragraph of §IV-B can also affect success of
the initial emulation. Since we only extract the first UNIX-
like filesystem from firmware images that contain multiple
filesystems, it is likely that only part of the filesystem has been
extracted, leading to a boot failure. Reassembling such systems
into a single filesystem is not straightforward because each
filesystem can potentially be mounted on top of another at
arbitrary locations.

Of the 8,591 firmware images that entered the “learning”
phase, only 32.3% (2,797) had their networking configuration
successfully inferred. We believe that this decrease occurred
due to failures in the boot process while attempting to infer the
network configuration. As we previously discussed in the last
paragraph of §IV-C1, problems with NVRAM emulation are
a significant contributor to these failures. For example, some
routers may not initialize correctly if our NVRAM implemen-
tation was not able to override the built-in implementation,
if insufficient default NVRAM values were loaded by our
implementation, or if the built-in NVRAM implementation
expected different semantics from NVRAM-related functions.
These manifest as various crashes or hangs during the boot
process, especially if memory or string manipulation functions
(memcpy(), strcpy(), etc.) are called on NULL values
returned by our NVRAM implementation for nonexistent
keys. Additionally, it is also possible that some images do
not use a NVRAM hardware peripheral, but instead write
configuration values directly to a MTD partition, which we
may not successfully emulate.

Other potential sources of networking failures include
different naming conventions for networking devices. For
example, devices that utilize Atheros or Ralink chipsets may
expect platform networking devices to be named similarly
to ath0 or ra0, respectively, instead of the generic eth0.
Likewise, other devices may expect the presence of a wireless
networking interface such as wlan0, and fail otherwise. In
addition, since our ARM little-endian emulation platform
currently supports only up to one emulated Ethernet device, this
may prevent some firmware images from correctly configuring
networking.

Only 70.8% (1,971) of the 2,797 images with an inferred
network configuration are actually reachable from the network
using ping. This may be caused by firewall rules on the
emulated guest that filter ICMP echo requests, resulting in
false negatives, or various other network configuration issues.
For example, our system may have mistakenly assigned the
host TAP interface in QEMU to the WAN interface of the
emulated device instead of a LAN interface, or identified the
default IP address of the WAN interface instead of the LAN
interface. Similarly, firmware may change the MAC address of
the emulated network device after it has booted, resulting in
stale ARP cache entries and a machine that appears unreachable.

Surprisingly, our results show that 43% (846 out of 1,971
firmware images) of the network reachable firmware images
are vulnerable to at least one exploit. We discuss this further
in §V-B, where we give a breakdown by exploit.
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Exploit ID # Images # Products Affected Vendor(s)
47 282 16 21, 22, 37
56 169 14 16, 21, 35
64 169 27 12, 21, 37
45 136 13 21
43 88 10 12
202 49 11 12, 16, 21, 36, 37, 42
207 35 6 21
60 31 9 7, 12, 19, 21, 37
205 16 5 21
206 14 4 21
203 13 5 12
59 9 N/A 12
200 8 1 21
201 7 1 21
210 7 2 12

4 6 N/A 12
24 5 1 19, 42
213 4 1 21
214 4 1 21
39 3 N/A 12
209 3 1 12
212 3 1 21
61 2 1 42
204 1 N/A 21
211 1 1 21

TABLE V: Breakdown of exploits by number of affected
firmware images, number of affected products, and affected
vendor(s), indexed into Table VII. Note: N/A indicates that we
do not have sufficient metadata to compute a lower-bound on
affected products.

# Exploits # Images # Vendor(s) # Products
5 2 1 1
4 8 1 3
3 30 2 10
2 86 5 14
1 761 9 77
0 1,910 22 263

Total 2,797 42 322

TABLE VI: Breakdown of successful exploits by number of
network inferred firmware images, number of vendor(s), and
number of affected products.

B. Results

In Table V, we provide a breakdown of all successful
exploits by exploit. Exploits in the range #0 – #100 are sourced
from the Metasploit Framework, whereas most exploits greater
than or equal to #200 are previously-unknown vulnerabilities for
which we developed proof-of-concepts (POC’s). This excludes
#202, which is a known vulnerability but not sourced from
the Metasploit Framework. Each of these previously-unknown
vulnerabilities has been reported to the respective vendor,
following the policies of responsible disclosure. We discuss
a few specific vulnerabilities below in greater detail as case
studies.

By tabulating the results from Table V for each firmware
image, we obtain Table VI, which provides a breakdown of the
network inferred firmware images by the number of successful
exploits. This shows that a small number of these firmware
images are vulnerable to more than two exploits, with the least
secure image suffering from five exploits. Interestingly, all 40 of
these firmware images vulnerable to more than two exploits are
routers and access points manufactured by D-Link and Netgear;
however, this data may be skewed by the distribution of our
exploits and firmware images, which is not uniform. These
results initially seem to decay exponentially, with less than half
(39.8%) of firmware images vulnerable to zero exploits being
vulnerable to one exploit, but then there is a long-tail in the
vulnerability distribution, with only 4.5% (126) of firmware
images affected by more than one exploit.

1) Command Injection (#200, #201, #204 – #206, #208):
While analyzing the aggregate results of our automated
accessible webpages analysis (§IV-D1), we discovered six
previously-unpublished command injection vulnerabilities that
affect 24 firmware images for wireless routers and access points
manufactured by Netgear. All six vulnerabilities were within
PHP server-side scripts that provided debugging functionality
but appeared to be accidentally included within production
firmware releases. In particular, five of these were used to
change system parameters such as the MAC address of the
WLAN adapter, and the region of the firmware image (e.g.,
World Wide [WW], United States [US], or Japan [JP]). The
remaining one was used to write manufacturing data such as
MAC address, serial number, or hardware version into flash
memory. Our manual analysis of the PHP source code revealed
that all were straightforward command injection vulnerabilities
through the $_REQUEST super-global and unsafe use of the
exec() function. After discovering these potential vulnera-
bilities, we leveraged FIRMADYNE to automatically verify
their exploitability across our entire dataset.

2) Buffer Overflow (#203): Another new vulnerability that
we manually discovered, using the results of our automated
accessible webpages analysis, was a buffer overflow vulnera-
bility within firmware images for certain D-Link routers. To
implement user authentication, the webserver sets a client-side
cookie labeled dlink_uid to a unique value that is associated
with each authenticated user. Instead of verifying the value
of this cookie within the server-side scripting language of the
webpage, this authentication functionality was actually hard-
coded within the webserver, which uses the standard library
functions strstr(), strlen(), and memcpy() to copy
the value of the cookie. As a result, we were able to set the value
of this cookie to an overly-long value to cause the webserver
to crash at 0x41414141, another poisoned argument that we
monitor for.

3) Information Disclosure (#207, #209 – #214): Using the
automated webpage analysis, we also discovered seven new
information disclosure vulnerabilities across our dataset that
affect 51 firmware images for various routers manufactured
by both D-Link and Netgear. One of these (#207) was within
an unprotected webpage that provides diagnostic information
for the router, including the WPS PIN and passphrases for all
locally-broadcast wireless networks.
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The remaining six vulnerabilities (#209 – #214) were within
the Simple Network Management Protocol (SNMP) daemon of
both manufacturers. This feature was enabled by default likely
because these routers were targeted towards small businesses
rather than home users. To interpret results obtained from
SNMP queries, one needs access to a Management Information
Base (MIB) file that describes the semantics of each individual
object (OID) field. As discussed in §III-B, our crawlers record
links to MIB files in the collected metadata, enabling manual
verification of the obtained results.

Our automated exploit verification showed that these
firmware images would respond to unauthenticated SNMP
v2c queries for the public and private communities, and
return values for the OID’s that contain web-based access
credentials for all users on the device, and wireless credentials
for all locally-broadcast wireless networks.

4) Sercomm Configuration Dump (#47): This exploit, re-
ported as CVE-2014-06595 and sourced from the Metasploit
Framework, attacks undocumented and badly-designed features
of the scfgmgr service to remotely dump system configuration
variables from NVRAM and obtain a shell. Public documenta-
tion for this vulnerability suggests that, as of 2015-01-28, it was
known to affect firmware for networking devices manufactured
by Cisco, Linksys, Netgear, and a variety of smaller vendors.
This is corroborated by our automated analysis, which also
confirmed the presence of this vulnerability within devices
manufactured by On Networks and TRENDnet. More precisely,
our results suggest that this single vulnerability affects 14.3%
of all network reachable firmware images from our dataset.
This is because Sercomm Corporation is likely the original
equipment manufacturer (OEM) for these devices, which were
then re-branded and re-sold by various vendors.

5) MiniUPnPd Denial of Service (#56): Reported as CVE-
2013-02296, this exploit takes advantage of parsing flaws for the
Simple Service Discovery Protocol (SSDP) within MiniUPnP7,
an open-source UPnP daemon implementation, to trigger a
denial of service attack on this service.

According to our results, 8.5% of all network reachable
firmware images from our dataset are vulnerable to this attack,
which was fixed on 2009-10-30 with the release of MiniUPnP
1.4. Affected vendors include Huawei, Netgear, and Tomato by
Shibby, which is a community-developed third-party firmware
for various wireless routers. Statistics released by Rapid7,
the developers of the Metasploit Framework and the original
reporters of this vulnerability, indicate that as of 2013-01-
29, 332 products used MiniUPnP 1.0, with over 69% of all
MiniUPnP fingerprints corresponding to version 1.0 or older.
Again, these results emphasize the prevalence of cross-vendor
vulnerabilities due to shared software components, whether
open-source or proprietary.

6) OpenSSL ChangeCipherSpec (#64): This vulnerability
was reported as CVE-2014-02248, and takes advantage of a
bad state machine implementation for the SSL/TLS handshake

5https://github.com/elvanderb/TCP-32764
6https://community.rapid7.com/servlet/JiveServlet/download/2150-1-

16596/SecurityFlawsUPnP.pdf
7http://miniupnp.free.fr/
8http://ccsinjection.lepidum.co.jp/

process in all versions of OpenSSL before 0.9.8za, 1.0.0m,
and 1.0.1h. Exploitation of this vulnerability allows an attacker
to downgrade the cipher specification between a client and
a server, potentially permitting a man-in-the-middle (MITM)
attack. Our results show that 8.5% of all network reachable
firmware images are vulnerable to this attack, which is 89.9%
of all firmware images that accept HTTPS connections. This
exploit also affects 8.4% of all products in our dataset, the most
out of all exploits. Affected vendors include D-Link, Netgear,
and TRENDnet.

C. Discussion and Limitations

Although FIRMADYNE performed well in our experi-
ments, there is certainly room for improvement. As discussed
previously in §IV-B, §IV-C1, and §IV-C2, additional manual
effort can improve the system by, e.g., fixing extraction failures,
adding support for additional hardware architectures, or cor-
recting emulation failures. These changes require an analyst to
manually classify failures by root cause and perform the changes
that are necessary to increase compatibility. Implementing a
new analysis pass also requires manual labor, though we can
potentially reap a large benefit from it because each newly-
implemented analysis can be automatically executed on all
supported firmware images from our dataset.

In addition, as mentioned in §V, our results can be difficult
to evaluate due to the lack of a mechanism for quantifying real-
world impact in terms of unique products (instead of unique
firmware images). Likewise, our results are affected by skew
caused by differences in vendor composition of our dataset,
and of network reachable firmware images.

Other limitations of FIRMADYNE include the usage of
custom pre-built kernels, which currently do not load out-
of-tree kernel modules from the filesystem. As a result, our
system cannot be used to confirm vulnerabilities in kernels or
kernel modules shipped by the vendor within firmware images.
For example, we are unable to assess the prevalence of the
KCodes NetUSB kernel module buffer-overflow across our
dataset because of this limitation.

Likewise, we do not identify which network port is used
as the uplink (or WAN) port, and which network port(s) are
used for the downlink (or LAN) port(s). This prevents us from
determining whether detected vulnerabilities are exploitable
from the Internet, or only by locally-connected clients.

Nevertheless, a number of techniques can be used by remote
attackers to pivot from the WAN interface to the LAN interface
over a web browser, including Cross-Site Request Forgery
(CSRF), Cross-Site Scripting (XSS), or even DNS rebinding
attacks. Additionally, with the increasing deployment of IPv6,
local machines are now being assigned globally-routable IP
addresses. This potentially allows attackers to access the LAN
interface of consumer devices, even though routers can still
act as firewalls. An increasing number of wireless routers and
access points also now support network isolation or client
isolation features, which can segregate traffic between various
wireless or physical interfaces. However, the presence of these
vulnerabilities within the gateway router clearly compromises
this protection.
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VI. RELATED WORK

With the increasing prevalence of embedded devices, several
related works have performed large-scale analyses of firmware
images, using a variety of analysis techniques. For exam-
ple, Heffner9 performed large-scale extraction of embedded
firmware images to gather a database of over 2, 000 hardcoded
SSL private keys. Likewise, Rapid710 used a similar analysis
for hardcoded SSH private keys, albeit on a smaller scale.

Using static analysis, Costin et al. [8] recently analyzed
a dataset of approximately 32, 000 firmware images. They
discovered a total of 38 previously-unknown vulnerabilities,
including hard-coded back-doors, embedded private key-pairs,
and XSS vulnerabilities, all of which were obtained “without
performing sophisticated static analysis”.

Another effective technique for large-scale measurement of
embedded device security is network scanning, which avoids
direct analysis of firmware images. Using tools such as Nmap,
Cui and Stolfo [10] identified approximately 540, 000 publicly-
accessible embedded devices with default access credentials.
Over the course of a 4-month longitudinal study, they discovered
that less than 3% of access credentials were changed, which
suggests that user awareness is lacking. Likewise, using the
ZMap [13] network scanner, Heninger et al. [14] showed that
embedded devices can also suffer from entropy problems.
Their results indicate that 2.45% of TLS certificates may
be vulnerable to brute-force attacks due to faulty RSA key
generation, and that 1.03% of DSA private keys are factorable
due to nontrivial common factors.

Additionally, previous work has discovered specific vul-
nerabilities that affect various classes of embedded devices.
Using HP LaserJet printers as a case study, Cui et al. [9]
demonstrated that remote firmware update functionality can
be exploited by attackers to insert malware. Weinmann [18]
showed that deployed cellular baseband implementations suffer
from remotely exploitable memory corruption vulnerabilities,
which can be used to execute arbitrary code on the baseband
processor. Similarly, Bonkoski et al. [6] showed that remote
management functionality on server motherboards is riddled
with security vulnerabilities, allowing a remote attacker to take
control of the system. Finally, Maskiewicz et al. [16] and Nohl
et al. [17] showed that malicious functionality can be inserted
into the firmware of USB peripherals, allowing an attacker to
take control of host systems and exfiltrate data.

To defend against this attack vector, several different
techniques have been developed to find vulnerabilities in
embedded devices. For example, Davidson et al. [11] have
developed a symbolic executor using the KLEE [7] symbolic
execution engine to detect vulnerabilities in embedded devices.
Their work discovered 21 memory safety bugs across a corpus
of 99 open-source firmware programs for the MSP430 family
of 8-bit embedded micro-controllers. At a lower level, Li
et al. [15] ported the QEMU emulator into the BIOS to model
hardware peripherals for validation of an embedded SoC during
development.

9https://github.com/devttys0/littleblackbox
10https://github.com/rapid7/ssh-badkeys

Recently, Zaddach et al. [19] have also developed a
framework for performing dynamic analysis of embedded
firmware by forwarding I/O accesses from within an emulator
the actual hardware for execution. However, this approach does
not scale in terms of analysis cost and time, which is why
we have designed FIRMADYNE to perform robust hardware
emulation and vulnerability verification in an automatic manner.

VII. CONCLUSION & FUTURE WORK

By developing FIRMADYNE, our automated dynamic
analysis framework, we hope to lower the bar for discovering
new vulnerabilities within embedded systems. At the same time,
FIRMADYNE implements an automated approach to assess
the prevalence of newly-discovered security vulnerabilities
in a large population of embedded device firmware images.
Given the weak security posture of these devices, we believe
that greater attention to these devices by security researchers,
hobbyists, and other interested parties can motivate device
manufacturers to address security issues in their products more
swiftly. This is especially true for OEMs, who are responsible
for a significant fraction of the vulnerabilities in existing
deployed devices.

As shown in Fig. V-A, the next-largest category (after
Linux) of embedded firmware from our dataset are from
various proprietary real-time operating systems (RTOS) such
as VxWorks. This presents a potential avenue for future work,
especially given the existence of published vulnerabilities that
affect these platforms. In particular, we would be interested in
developing a compatibility layer for these applications using
existing real-time Linux development frameworks such as
Xenomai on our emulation platform.

A considerable number of source code releases are available
for many Linux-based embedded firmware due to the terms
of common open-source software licenses. Since our dataset
includes links to applicable source code for each firmware
image, this could provide a mechanism for implementing
effective static analysis, in conjunction with our existing
framework for performing dynamic analysis.

Finally, statistical analysis techniques could be utilized to
improve the firmware extraction component of our framework.
Firmware images that appear obfuscated or encrypted could be
handled by a separate extraction pathway. For example, it is
well-known that firmware for Buffalo LinkStation devices are
encrypted, but passwords and decryption utilities are publicly
available.11 The same applies to various firmware distributed
for QNAP devices.12

Acknowledgment: This work was supported in part by
grants from the Department of Defense through the National
Defense Science & Engineering Graduate Fellowship Program
and under contract no. N66001-13-2-4040, and the Office of
Naval Research under grant N00014-15-1-2948. Any opinions,
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11http://buffalo.nas-central.org/wiki/Firmware_update
12http://pastebin.com/KHbX85nG
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APPENDIX

A. Dataset Breakdown

In Table VII to follow, we show the progress of FIRMA-
DYNE in analyzing the firmware images in our dataset, grouped
by vendor. Approximately 10% of all extracted firmware images
were exploited.

15

http://binwalk.org/
http://www.metasploit.com/
http://www.metasploit.com/
https://nmap.org/
https://nmap.org/
https://www.usenix.org/legacy/publications/library/proceedings/usenix05/tech/freenix/bellard.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix05/tech/freenix/bellard.html
http://portal.acm.org/citation.cfm?doid=1646353.1646374
http://portal.acm.org/citation.cfm?doid=1646353.1646374
https://www.usenix.org/conference/woot13/workshop-program/presentation/bonkoski
https://www.usenix.org/conference/woot13/workshop-program/presentation/bonkoski
https://www.usenix.org/legacy/events/osdi08/tech/
https://www.usenix.org/legacy/events/osdi08/tech/
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/costin
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/costin
http://www.internetsociety.org/doc/when-firmware-modifications-attack-case-study-embedded-exploitation
http://www.internetsociety.org/doc/when-firmware-modifications-attack-case-study-embedded-exploitation
http://www.scopus.com/inward/record.url?eid=2-s2.0-78751540482&partnerID=40&md5=759904ebe0eca35e4297072f7224cf55
http://www.scopus.com/inward/record.url?eid=2-s2.0-78751540482&partnerID=40&md5=759904ebe0eca35e4297072f7224cf55
http://www.scopus.com/inward/record.url?eid=2-s2.0-78751540482&partnerID=40&md5=759904ebe0eca35e4297072f7224cf55
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/davidson
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/davidson
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/durumeric
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/durumeric
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/heninger
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/heninger
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5751510&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5751510&tag=1
https://www.usenix.org/conference/woot14/workshop-program/presentation/maskiewicz
https://www.usenix.org/conference/woot14/workshop-program/presentation/maskiewicz
https://www.blackhat.com/us-14/briefings.html#badusb-on-accessories-that-turn-evil
https://www.blackhat.com/us-14/briefings.html#badusb-on-accessories-that-turn-evil
https://www.usenix.org/conference/woot12/workshop-program/presentation/weinmann
https://www.usenix.org/conference/woot12/workshop-program/presentation/weinmann
http://dx.doi.org/10.14722/ndss.2014.23229


In
de

x
V

en
do

r
D

ow
nl

oa
d

E
xt

ra
ct

ed
A

rc
h.

Id
en

tifi
ed

In
iti

al
E

m
ul

at
io

n
N

et
w

or
k

In
fe

rr
ed

N
et

w
or

k
R

ea
ch

ab
le

E
xp

lo
ite

d
1

A
ct

io
nt

ec
14

(6
)

8
(4

)
5

(3
)

8
(4

)
0

(0
)

0
(0

)
0

(0
)

2
A

ir
lin

k1
01

15
(1

2)
1

(1
)

1
(1

)
1

(1
)

1
(1

)
0

(0
)

0
(0

)
3

A
pp

le
9

(N
/A

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
4

A
su

s
3

(1
)

1
(1

)
1

(1
)

1
(1

)
0

(0
)

0
(0

)
0

(0
)

5
A

T
&

T
25

(1
)

6
(1

)
4

(1
)

6
(1

)
2

(1
)

0
(0

)
0

(0
)

6
AV

M
13

2
(N

/A
)

7
(N

/A
)

7
(N

/A
)

7
(N

/A
)

0
(0

)
0

(0
)

0
(0

)
7

B
el

ki
n

14
0

(6
1)

55
(2

9)
55

(2
9)

53
(2

9)
7

(4
)

3
(2

)
2

(2
)

8
B

uf
fa

lo
14

3
(6

1)
6

(5
)

5
(4

)
6

(5
)

4
(3

)
0

(0
)

0
(0

)
9

C
en

tu
ry

L
in

k
31

(4
)

9
(4

)
9

(4
)

9
(4

)
1

(1
)

1
(1

)
0

(0
)

10
C

er
ow

rt
14

(N
/A

)
14

(N
/A

)
14

(N
/A

)
8

(N
/A

)
8

(N
/A

)
0

(0
)

0
(0

)
11

C
is

co
61

(N
/A

)
43

(N
/A

)
39

(N
/A

)
34

(N
/A

)
2

(N
/A

)
0

(0
)

0
(0

)
12

D
-L

in
k

4,
68

8
(4

34
)

1,
12

4
(1

13
)

1,
08

9
(1

09
)

1,
12

1
(1

19
)

60
9

(6
5)

45
8

(4
8)

21
9

(3
2)

13
Fo

rc
ew

ar
e

2
(N

/A
)

2
(N

/A
)

2
(N

/A
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

14
Fo

sc
am

56
(2

3)
5

(5
)

5
(5

)
5

(5
)

5
(5

)
0

(0
)

0
(0

)
15

H
ax

or
w

ar
e

7
(N

/A
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

16
H

ua
w

ei
29

(1
7)

5
(3

)
5

(3
)

5
(3

)
3

(2
)

2
(1

)
2

(1
)

17
In

m
ar

sa
t

47
(N

/A
)

2
(N

/A
)

2
(N

/A
)

2
(N

/A
)

2
(N

/A
)

0
(0

)
0

(0
)

18
Ir

id
iu

m
17

(N
/A

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
19

L
in

ks
ys

12
6

(2
9)

10
5

(2
4)

10
1

(2
1)

10
5

(2
4)

43
(9

)
36

(8
)

5
(3

)
20

M
ik

ro
Ti

k
13

(4
)

5
(N

/A
)

4
(N

/A
)

2
(N

/A
)

0
(0

)
0

(0
)

0
(0

)
21

N
et

ge
ar

5,
28

0
(3

72
)

2,
13

5
(1

56
)

2,
10

9
(1

55
)

2,
05

4
(1

49
)

1,
29

7
(9

2)
1,

07
8

(7
9)

62
8

(4
7)

22
O

n
N

et
w

or
ks

28
(N

/A
)

15
(N

/A
)

15
(N

/A
)

15
(N

/A
)

11
(N

/A
)

10
(N

/A
)

7
(N

/A
)

23
O

pe
n

W
ir

el
es

s
1

(N
/A

)
1

(N
/A

)
1

(N
/A

)
1

(N
/A

)
1

(N
/A

)
0

(0
)

0
(0

)
24

O
pe

nW
rt

1,
49

8
(4

1)
1,

30
3

(2
7)

1,
30

3
(2

7)
1,

29
5

(2
5)

32
6

(8
)

8
(4

)
0

(0
)

25
pf

Se
ns

e
25

6
(6

0)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
26

Po
ly

co
m

64
4

(6
)

24
(1

)
7

(1
)

7
(1

)
0

(0
)

0
(0

)
0

(0
)

27
Q

N
A

P
46

4
(8

8)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
28

R
ou

te
rT

ec
h

12
(N

/A
)

12
(N

/A
)

0
(0

)
12

(N
/A

)
0

(0
)

0
(0

)
0

(0
)

29
Se

ik
i

16
(1

0)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
30

Su
pe

rm
ic

ro
15

0
(7

7)
26

(1
7)

26
(1

7)
26

(1
7)

0
(0

)
0

(0
)

0
(0

)
31

Sy
no

lo
gy

2,
09

4
(1

70
)

18
1

(5
1)

34
(1

2)
16

(1
2)

0
(0

)
0

(0
)

0
(0

)
32

Te
nd

a
24

4
(5

5)
59

(2
2)

52
(1

9)
59

(2
2)

1
(1

)
1

(1
)

0
(0

)
33

Te
nv

is
49

(4
)

26
(3

)
26

(3
)

26
(3

)
17

(3
)

17
(3

)
0

(0
)

34
T

hu
ra

ya
18

(N
/A

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
35

To
m

at
o

by
Sh

ib
by

2,
94

2
(6

)
2,

94
0

(6
)

2,
94

0
(6

)
2,

94
0

(6
)

21
(2

)
20

(2
)

1
(1

)
36

T
P-

L
in

k
1,

07
2

(3
67

)
30

2
(1

03
)

30
2

(1
03

)
30

0
(1

02
)

24
5

(8
1)

20
6

(7
3)

3
(1

)
37

T
R

E
N

D
ne

t
82

2
(1

62
)

27
2

(4
6)

26
9

(4
5)

27
0

(4
6)

13
2

(2
6)

94
(1

7)
15

(1
)

38
U

bi
qu

iti
51

(1
1)

36
(8

)
25

(5
)

36
(8

)
0

(0
)

0
(0

)
0

(0
)

39
u-

bl
ox

16
(N

/A
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

40
V

er
iz

on
37

(1
)

2
(N

/A
)

1
(N

/A
)

2
(N

/A
)

0
(0

)
0

(0
)

0
(0

)
41

W
es

te
rn

D
ig

ita
l

1
(N

/A
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

42
Z

yX
E

L
1,

76
8

(2
52

)
16

1
(3

8)
15

9
(3

8)
15

9
(3

9)
59

(1
8)

37
(1

3)
5

(1
)

To
ta

l
42

23
,0

35
(2

,3
31

)
8,

89
3

(6
67

)
8,

61
7

(6
11

)
8,

59
1

(6
25

)
2,

79
7

(3
22

)
1,

97
1

(2
52

)
88

7
(8

9)

TABLE VII: Breakdown of analysis progress by vendor, in terms of firmware images (products). Note: N/A indicates that we do
not have sufficient metadata to compute a lower-bound on affected products.
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