
TardisTM: Incremental Repair
for Transactional Memory

Daming D. Chen
Carnegie Mellon University

ddchen@cs.cmu.edu

Phillip B. Gibbons
Carnegie Mellon University

gibbons@cs.cmu.edu

Todd C. Mowry
Carnegie Mellon University

tcm@cs.cmu.edu

Abstract
Transactionalmemory (TM) provides developerswith a trans-
action primitive for concurrent code execution that transpar-
ently checks for concurrency conflicts. When such a conflict
is detected, the system recovers by aborting and restarting
the transaction. Although correct, this behavior wastes work
and inhibits forward progress.

In this paper, we present TardisTM, a software TM system
that supports repairing concurrency conflicts while preserv-
ing unaffected computation. Our key insight is that existing
conflict detection mechanisms can be extended to perform
incremental transaction repair, when augmented with addi-
tional runtime information. To do so, we design a mechanism
for localizing conflicts back to transactional program points,
define the semantics for optional repair handler annotations,
and extend the conflict detection algorithm to ensure all re-
pairs are completed. To evaluate our system, we characterize
the benefit of repair on a set of benchmark programs; we
measure up to 2.95x speedup over mutual exclusion, and 93%
abort reduction over a baseline software TM system that
does not support repair.

CCSConcepts. •Computingmethodologies→Concur-
rent computing methodologies; • Computer systems
organization →Multicore architectures.

Keywords. software transactional memory, program repair,
incremental computation

ACM Reference Format:
Daming D. Chen, Phillip B. Gibbons, and Todd C. Mowry. 2020.
TardisTM: Incremental Repair for Transactional Memory. In The
11th International Workshop on Programming Models and Applica-
tions for Multicores and Manycores (PMAM’20), February 22, 2020,
San Diego, CA, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3380536.3380538

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PMAM’20, February 22, 2020, San Diego, CA, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7522-1/20/02.
https://doi.org/10.1145/3380536.3380538

1 Introduction
Transactional memory (TM) provides developers with first-
class transactional regions that guarantee atomicity, consis-
tency, and isolation, avoiding the drawbacks of low-level
concurrency control primitives [21]. These guarantees are
ensured by the transactional runtime, which upon detect-
ing a concurrency conflict, will abort, roll back, and restart
a transaction. However, this behavior discards all work al-
ready performed within a transaction, which impedes for-
ward progress and decreases performance. Transactions that
are more likely to encounter conflicts, such as those that are
high-contention or long-running, are particularly affected.
PriorWorkHelpsBut Still Aborts/Restarts: Priorwork

has developed various orthogonal strategies to mitigate this
problem; namely, contention management, transaction sched-
uling, abort impact reduction, and conflict reduction. Nested
transactions [29] reduce the scope of aborts to that of the
innermost encapsulating transaction, but require strict nest-
ing and are frequently flattened when unsupported. Early
release [20], abstract locking [31], and transactional boost-
ing [19] reduce conflicts by bridging the semantic gap be-
tween abstract datatypes and concrete implementations, where
multiple implementation-defined memory states can cor-
respond to the same abstract state (e.g., multiple lists of
elements with different ordering can represent the same
unordered set). Taken further, semantic commutativity [48]
observes that certain abstract operations can be reordered; e.g.
insertion into a linked list, increment of an integer counter,
etc. However, these strategies only mitigate certain transac-
tion conflicts, at the cost of a completely different TM run-
time. Both transactional boosting and abstract locking require
abstract datatypes to inform the runtime of inverse abstract
operations, or to implement custom locking, which obviates
much of the benefits of TM. All these prior approaches still
rely on aborting and restarting.

Our Approach: Incremental Repair: In contrast, we
propose TardisTM, a software TM system that supports
incremental repair of conflicting transactions. Using repair
annotations, TardisTM can safely resume transaction ex-
ecution, ensuring forward progress and reducing wasted
work. As an example, consider the simplified array-based
microbenchmark shown in Listing 1, in which two concur-
rent transactions can conflict when one commits after incre-
menting the stored array value, and the other has read the
now-stale previous value.

1

https://doi.org/10.1145/3380536.3380538
https://doi.org/10.1145/3380536.3380538
https://doi.org/10.1145/3380536.3380538

PMAM’20, February 22, 2020, San Diego, CA, USA Daming D. Chen, Phillip B. Gibbons, and Todd C. Mowry

1 void work(data_t d) {
2 for (int i = 0; i < d.tx_per_thread; ++i) {
3 transaction {
4 for (int j = 0; j < d.ops_per_tx; ++j) {
5 unsigned idx = RAND_UNIFORM(0, d.array_size);
6 int val = d.array[idx];
7 if (!d.ops[j].read_only)
8 d.array[idx] = val + RAND_UNIFORM(0, 100);
9 } for (int k = 0; k < d.spin; ++k) { } // spin
10 }
11 }
12 }

Listing 1. A simplified array-based microbenchmark. A random
shared array value is read (lines 5–6), and randomly incremented if
the operation is read-write (lines 7–8). Some emulated local work is
performed (line 9). This is repeated for some number of operations
per transaction (line 4) and transactions per thread (line 2).

Instead of aborting, TardisTM can repair the stale read by
fetching the new value, re-incrementing it if the operation
was read-write, and resuming execution (this is shown later
in Listing 2). Similarly, a long-running transaction that may
append to a linked list can be repaired after conflict, by re-
appending to the new list, among many other examples.
Our key insight is that, in conjunction with certain ad-

ditional runtime information, conflict detection can be ex-
tended to perform incremental transaction repair using op-
tional repair handlers, which maintains compatibility with
existing transactional programs written for word-based sys-
tems (§2). Our main contributions are:
• We develop a repair mechanism for localizing transaction
conflicts back to program points (§3.3), define the seman-
tics for optional repair handler annotations (§3.5), and
augment the conflict detection algorithm to identify addi-
tional temporal conflicts (§3.4) introduced by incremental
repair (§3.6).

• We implement this design (§4) in TardisTM1, a software-
based transactional memory system.

• We provide repair annotations2 for a library of data struc-
tures and benchmark programs. With repair enabled, we
measure up to 93% abort reduction over a baseline sys-
tem that does not support repair, and 2.95x speedup over
mutual exclusion. This also exceeds the performance of
compiler-based software-only and hybrid hardware TM
designs (§5).

2 Background: Software-based TM
We design our repair mechanism as an extension of existing
software TM [42]. In this section, we provide a brief overview,
and show a commit-time write-back design in Figure 1.

Conflict Detection: Time-based designs (e.g., TL2 [9])
increment a global timestamp counter when a transaction
1
https://github.com/ddcc/tardisTM

2
https://github.com/ddcc/stamp

successfully completes (commits). A timestamp is associated
with every global memory address, which records when its
value was last updated. Each transaction stores the observed
timestamp for each global memory read in a local read set.
During read validation, the read set is checked for stale times-
tamps, and if one is detected, then a data conflict occurs.
Timestamp Extension [14, 36]: To minimize validation

frequency, each transaction tracks a local validity thresh-
old (Figure 1), which is initialized to the global timestamp
counter when the transaction starts. Read validation is per-
formed only if a transactional read observes a newer times-
tamp, or attempts to commit with a stale validity threshold.
If successful, the transaction can update its validity threshold
to the validation-time global timestamp counter.

Memory Locking: Transaction atomicity is ensured by
two-phase locking [13], which uses an additional global lock
array. A predefined surjective function maps memory ad-
dresses to locks, which can also store the corresponding
timestamps. In a word-based design, multiple memory words
may map to the same lock, resulting in lock aliasing and al-
lowing spurious conflicts (e.g., TinySTM [14], SwissTM [12],
McRT-STM [40]). These locks can be acquired eagerly as
memory is accessed (encounter-time), or lazily when a trans-
action attempts to commit (commit-time). If a lock is already
held by another transaction, then a lock conflict occurs.
Transactional Writes: A local write set is used to track

transactional writes. Under eager write-through, writes are
performed immediately, and the write set is used as an undo
log in case the transaction aborts. Conversely, under lazy
write-back, writes are delayed until successful commit, and
the write set is used as a redo log. This also requires reads to
check for pending writes in the write set.

Dynamically-AllocatedMemory: Transactional seman-
tics can be implemented using an epoch-based garbage col-
lector. Memory is queued for deallocation if it is allocated but
the transaction aborts, or if it is deallocated and the trans-
action commits. To avoid a use-after-free violation by other
ongoing transactions, conflicts are forced by incrementing all
corresponding lock timestamps, and deallocation is delayed
until all concurrent transactions have finished.

3 Design: TardisTM
We first discuss the design principles of TardisTM in §3.1,
before summarizing our design in §3.2, and detailing our
contributions in §3.3 - §3.7.

3.1 Principles
Precision: We want to preserve transaction progress

without discarding non-conflicting computation, which re-
quires finer-grained tracking to identify data and control-
flow dependencies involving stale reads.We achieve this with
first-class abstract operations and read set origin tracking,
which resemble lightweight dynamic program slicing [49].

2

https://github.com/ddcc/tardisTM
https://github.com/ddcc/stamp

TardisTM: Incremental Repair for Transactional Memory PMAM’20, February 22, 2020, San Diego, CA, USA

Shared Data

Global Memory (GM)

Address Value

0x1000 3

0x1004 1

… …

Timestamp Counter 16

Thread 1

Write Set (WS)

Address Value

… …

0x1000 4

Read Set

Lock Timestamp

… …

0 10

Validity Threshold 12

Lock Array

Index Locked Timestamp

0 false 10

1 false 6

… …. …

Figure 1. A time-based write-back commit-time locking TM. Ob-
serve that thread 1 read the value 3 from global memory location
0x1000 (lock 0) with timestamp 10, and then wrote the value 4 to
that location (Listing 1). Because it has a stale validity threshold
(12 vs. 16), timestamp extension is needed before commit.

Isolation: We want to avoid interacting with other con-
current transactions, in order to ensure consistency and
avoid additional synchronization. Each transaction repairs
its local conflicts with respect to global memory, much like
the rebase operation in distributed version control systems
such as git [46], which requires a write-back design (§2).
This also prevents cyclic dependencies from occurring. A
fully-repaired transaction thus appears as if it had instanta-
neously executed to the same program point.

Efficiency: To minimize overhead, we want to perform
repair as infrequently as possible. This favors a commit-time
locking design (§2), which we found to be much simpler than
an early prototype that used encounter-time locking.

Compatibility: Since repair annotations are optional, we
want to compose with existing transactions that abort.

3.2 Overview
WebuildTardisTM as an extension of a word-based software
TMwith time-based conflict detection and commit-time lock-
ing, which we denote the baseline system. At a high-level,
our approach is as follows:
1. Annotations for first-class abstract operations and repair

handlers are added to existing transactional code.
2. Inside a repairable transaction (§4.3), whenever an abstract

operation is executed (invoked), it is tracked in a local
operation log, and its corresponding read/write set entries
are tagged (§3.3). Also, the source of each read set entry
(origin tracking), and the chronology of each write set
entry (write history) are recorded (§3.4).

3. When a conflict is detected, incremental repair (§3.5) is
performed by executing any repair handlers attached to
the corresponding abstract operation. Various repair poli-
cies are available, including a replay repair that automati-
cally rolls back and re-executes the operation invocation.

Operation Log (OL)

Index Operation Arguments Return Val. Parent

0 ADD 0x0F00 N/A

Thread 1

Write Set (WS)

Address Prev. Invocation Value Timestamp

… … … … …

0x1000 N/A OL: 0 4 0

Read Set

Address Origin Invocation Value Timestamp

… … … … …

0x1000 GM OL: 0 3 10

Validity Threshold 12

Figure 2. Thread-local state of TardisTM at the same program
point as Figure 1, with changes bolded. Observe the additional
read set fields (abstract operation invocation, address, origin, and
value), as well as the additional write set fields (abstract operation
invocation, previous, and timestamp). The operation log shows
an ongoing invocation of an abstract operation annotated as ADD
(which is implemented by the transaction from Listing 1), and was
called with data pointer 0x0F00.

4. After a successful repair, conflict detection resumes. To
ensure correctness, any additional temporal conflicts (§3.6)
caused by repair must also be identified and repaired.

3.3 Conflict Localization: Abstract Operations
Recall the simplified array-based microbenchmark shown in
Listing 1. Observe that under the baseline system (shown in
Figure 1), when a data conflict occurs on lock #0, multiple
memory addresses may correspond to the same lock (e.g.
0x1000 and 0x1004), preventing localization to a specific
program point. We make a number of changes in TardisTM
to resolve this, discussed below and shown in Figure 2.
First, we store observed values and memory addresses

in the read set, which generally correspond to language-
level variables while in scope.3 Next, we define first-class
typed abstract operations, which annotate arbitrary code
sequences. Each execution (invocation) is recorded in a local
operation log, including its input arguments, return value,
and parent invocation (every transaction is initialized with
a dummy root). Furthermore, every read/write set entry is
tagged with its corresponding invocation.

Taken together, these changes record the execution history
of each transaction, ensuring that when a conflict occurs,
the repair handler (§3.5) can lift memory addresses back to
language-level variables at a specific point in time.
3Because variables are identified by memory address, any that are modified
during repair must be address-taken and thus memory-backed. We also
define an optional user-defined tag field (omitted for clarity), which can be
used to disambiguate between sum types (e.g., unions in C), record the base
address of a product type (e.g., structs in C), or store other implementation-
defined repair information.

3

PMAM’20, February 22, 2020, San Diego, CA, USA Daming D. Chen, Phillip B. Gibbons, and Todd C. Mowry

Transaction Execution

read(0x1000) = 3

write(0x1000, 4)

Invocation 1

read(0x1000) = 4

write(0x1000, 5)

Invocation 2

read(0x1000) = 5

write(0x1000, 6)

Invocation 3

G
lo

b
al

 M
em

o
ry

c
=

0

c
=

0

t
=

1
0

Figure 3. A simulated transaction that executes the same abstract
operation thrice, with each incrementing a variable at address
0x1000. Reads are depicted in red boxes, and writes in purple boxes.
Dashed red lines denote reads of local writes not tracked by the base-
line system, dashed blue arrows denote our origin tracking mecha-
nism, and dashed green arrows denote our write historymechanism.
Observe that reads of global memory record the lock timestamp,
whereas reads of local writes record the per-entry counter (in this
case 𝑐 = 0 because the writes are in separate invocations).

3.4 Dependency Resolution: Origin Tracking
Likewise, under the baseline system, reads of local writes
are not tracked in the read set, and existing entries in the
write set are overwritten when subsequent writes occur at
the same address. This inhibits repair, because intermediate
write-read dependence edges are lost, preventing detection
of these stale computations. To address this problem, we
perform origin tracking, which includes a mechanism for
storing write history, shown in Figures 2 and 3.

First, we create an entry in the read set for each read of a
local write. To disambiguate between reads of global memory
and the write set, we introduce an “origin” field in the read
set that specifies the source (GM orWS). As an optimization,
we enable deduplication of read set entries to avoid storing
multiple copies of the same read (e.g., if executed in a loop).
Next, to determine if a write set entry has been changed

since it was last read (e.g., by repair), we introduce a per-entry
last update timestamp for the write set that is analogous to
the last update timestamp for global memory.4 Thus, the
“timestamp” field of each read set is interpreted based on
its origin, either with respect to a local write set entry or
to a shared lock array entry. These changes affect conflict
detection, which we discuss subsequently in §3.6.

Finally, instead of immediately overwriting existing write
set entries, we implement a lightweight history mechanism
that tracks the chronology of past writes at the same address.
Since each write set entry is already associated with an ab-
stract operation invocation (§3.3), we identify past entries by
their address and abstract operation invocation. This means
that an existing entry is overwritten only if both fields match,
and otherwise a new entry is created and the old entry is
recorded as its “previous” entry.5

4An alternative approach could compare observed values instead, but would
suffer from value aliasing.
5This is simplified for the sake of brevity, because abstract operation invo-
cations can nest. In certain situations, such as a straddle write where two
writes in a parent (outer invocation) span at least one write in a child (inner
invocation), we may create additional entries to maintain a consistent linear
timeline in the event that some are reverted during repair.

1 tardistm_repair_t repair(tardistm_conflict_t c) {
2 int idx = c.addr - d.array;
3 assert (!c.recursive && idx < d.size);
4 tardistm_read_t r = c.conflict;
5 int old_read = TARDISTM_READ_VALUE(r);
6 int new_read = TARDISTM_READ_UPDATE(r);
7 tardistm_write_t w = TARDISTM_WRITE_QUERY(d.array[idx]);
8 if (old_read == new_read || !TARDISTM_VALID_WRITE(w))
9 return TARDISTM_REPAIR_OK;
10 int old_write = TARDISTM_WRITE_VALUE(w);
11 TARDISTM_WRITE_UPDATE(w, new_read + (old_write -

old_read));↩→
12 return TARDISTM_REPAIR_OK;
13 }

Listing 2. A simplified manual delayed repair for Listing 1, involv-
ing a stale read at some array index. As outlined in §1, the value of
the stale read is fetched (line 4–5) and updated (line 6). If a write
occurred (line 8), the stale write is updated (lines 10–11).

3.5 Incremental Repair
3.5.1 Overview. When attempting incremental repair, we
look up the appropriate repair handler for the conflicting
abstract operation invocation. We distinguish between just-
in-time and delayed repair handlers, which have different
capabilities depending on whether the conflicting invocation
is still executing (and thus on the stack). The former are lexi-
cal closures, which can directly modify the execution context,
and complete using a continuation that allows execution to
resume at any program point within the same abstract oper-
ation. In contrast, the latter must utilize a different interface,
described below in §3.5.2.
Next, each repair handler must select from one of two

different repair policies: replay or manual. Under a replay
repair, the repair handler delegates the repair to TardisTM,
which will automatically revert all effects of the conflicting
invocation on the local transaction, and re-executes it at
that point in time with the same arguments. This requires
that an abstract operation corresponds to an implementation
function of the same type.

Subsequently, our conflict detection algorithm (§3.6) will
identify any orphan or stale dependent computations as tem-
poral conflicts that must also be repaired to avoid transaction
abort. Changes to non memory-backed dependents, such as
return value, constitute a recursive conflict that precipitates
repair at the parent invocation, effectively recursing up the
execution stack recorded in the operation log.6

3.5.2 Manual Repair. During a manual repair, the repair
handler is providedwith the conflict context, and given an op-
portunity to perform repair. We show examples of a delayed
repair in Listing 2, and a just-in-time repair in Listing 3.

6By default, detection of a recursive conflict is triggered by a change in
value, but repair handlers can use a special flag to force a conflict in the
event that, for example, a change is written non-transactionally through an
input argument or return value.

4

TardisTM: Incremental Repair for Transactional Memory PMAM’20, February 22, 2020, San Diego, CA, USA

Transaction
State

Repair Operation
Query Update Create Revert

Read Set Value Value Entry Entry
Write Set Value Value Entry Entry

Operation Log Input Args.,
Return Value

Return
Value Invocation Invocation

Dynamically-Allocated
Memory Allocate, Free N/A Allocate, Free Allocate, Free

Table 1. Interface for operating on transaction state during repair,
discussed in §3.5.2 and for dynamically-allocated memory, §3.7.

The conflict context always includes the memory address
and corresponding abstract operation invocation of the con-
flict. Depending on the conflict type, it may also include a
reference to the stale read set entry (data conflict), or the
values of the previous and current return values (recursive
conflict). Each repair handler must indicate if it succeeded,
and may provide a new return value. Should it fail, the trans-
action may have become inconsistent and must abort.
We provide repair handlers with a special interface for

querying and modifying the internal state of TardisTM,
including the read set, write set, and operation log. These
operations, summarized in Table 1, are temporally scoped
such that the affected transaction observes the current global
memory without the effects of its subsequent transactions.
This ensures that queries cannot retrieve its future state,
and modifications cannot affect its past state–paradoxes that
would violate temporal consistency.

New writes that are created by the repair handler must
be carefully handled, because the origin of subsequent reads
at the same address should now point to this write. In the
event that the conflicting invocation has already performed
a write at this address, we simply abort the repair because
their chronology cannot be automatically resolved.7 After
eagerly correcting the “origin” field of subsequent reads, we
deliberately invalidate their observed timestamp to ensure
subsequent identification by conflict detection (§3.6).
Note that bugs or unsafe behavior within repair han-

dlers can violate transaction consistency. For example, non-
transactional reads and writes will evade the temporal scop-
ing provided by our design. Likewise, failure to update a stale
write will prevent detection of its subsequent stale reads.

3.6 Temporal Conflict Detection
To ensure the correctness and convergence of incremental
repair, we need to perform each individual repair in their
original execution order. Because repair occurs whenever a
conflict is detected, this means that a particular ordering of
conflict detection is needed. In contrast, the baseline system
aborts and restarts when any conflict is detected.
We resolve this by imposing chronological ordering on

the read set, and limiting conflict detection to read valida-
tion, which iterates sequentially through the read set. During
7Automated replay repairs do not suffer from this problem, because the
entire abstract operation invocation is reverted and re-executed.

normal execution, entries are appended to the read set, and
when a new read occurs during repair, it is inserted at the
correct position. After completing each repair, conflict detec-
tion resumes at the next entry, and if invalid, the first read set
entry from the current abstract operation invocation. These
changes ensure that repairs respect dependency ordering.

Asmentioned previously (§3.4), our read set tracks reads of
both the global memory and the local write set. The conflict
criterion for the former remains unchanged; a data conflict
occurs when the observed timestamp does not match the
lock’s last update timestamp (§2). In contrast, a temporal
conflict occurs when the originating write set entry has been
reverted (§3.5.2), or the observed timestamp does not match
the write’s last update counter (§3.4).

Additionally, care must be taken to avoid executions that
would be impossible in the baseline system. If conflicts with
multiple committed transactions are detected during incre-
mental repair, the transaction must abort, because it might be
partially repaired with respect to an older version of global
memory that has been overwritten. Similarly, if a new read
occurs during repair while the current transaction is attempt-
ing to commit, and the corresponding lock is held by another
concurrent transaction, it must abort to avoid deadlock due
to circular waiting. Finally, if a new write occurs during
repair while the current transaction is attempting to com-
mit, it must re-attempt commit because it may not own the
corresponding lock, which would violate two-phase locking.

3.7 Dynamically-Allocated Memory
Transactional operations on dynamically-allocated memory
may also need to be repaired. To support this, we tag queued
memory operations (§2) with their corresponding abstract
operation invocation, and extend the repair handler interface
to include these operations (Table 1). Thus, deallocations can
be reverted by simply removing the queued request. But,
allocations cannot be reverted by deallocating immediately,
because they could be reused by the memory allocator and
alias with an existing unrepaired read/write set entry. Instead,
reverted allocations must be queued for the garbage collector.

4 Implementation
We implement TardisTM on top of TinySTM [14], an exist-
ing software TM written in the C programming language.
Our changes amount to approximately an additional 5.7 kloc,
computed using cloc [8].

4.1 Abstract Operations
Abstract operations are dynamically registeredwithTardisTM
at startup using a function with the constructor attribute, a
compiler extension supported by both the GNU C Compiler
(GCC) and Clang. A macro is used to generate the body of
this function for all abstract operations defined in the current
compilation unit. Manual calls are inserted to record input
arguments and return value for each abstract operation.5

PMAM’20, February 22, 2020, San Diego, CA, USA Daming D. Chen, Phillip B. Gibbons, and Todd C. Mowry

4.2 Just-in-Time Repair
Just-in-time repair handlers (§3.5.1) are implemented us-
ing nested functions, a GCC-specific feature for lexical clo-
sures [3]. Because these are generated as executable stack
trampolines, we ensure that the corresponding invocation is
still executing by recording and subsequently invalidating
the address of the nested function in the operation log. To
perform automatic replay, we record the implementation
function for each abstract operation and invoke it using the
libffi [15] library, which can dynamically generate typed
function calls for the platform-specific calling convention.

Continuations are implemented using another GCC-specific
extension, local labels, which allow nested functions to im-
mediately return from any intermediate stack frames and
goto the code at the label. Just-in-time repair handlers must
first call a special cleanup function to fix-up the internal
state of TardisTM before doing so; e.g. locks may need to
be released if the transaction was committing.

4.3 Adaptive Execution
To reduce overhead, we proactively check whether the cur-
rent abstract operation invocation is repairable. If not, we
disable operation logging (§3.3), as well as origin tracking
and write history (§3.4).

5 Evaluation
To demonstrate the effectiveness of transaction repair, we
evaluate TardisTM on a set of benchmark programs: array
(Listing 1), and the Stanford Transactional Applications for
Multi-Processing [28] (STAMP).8 We manually developed
repair annotations for various operations on linked lists,
hashtables, queues, and red-black trees, as well as program-
specific logic and data structures. Most of these were for
STAMP’s internal data structure library, which are used by
multiple individual benchmarks.
We compare against TinySTM, baseline TardisTM with-

out all repair-related functionality9 (TardisTM-None), lock-
based mutual exclusion (Mutex), as well as GCC’s compiler-
based software system (GCC) and compiler-based hybrid [7]
(GCC-RTM), which utilizes hardware Intel Restricted Trans-
actional Memory [17] (RTM).
Our benchmarks were performed on a system with a

Samsung 850 EVO 500GB SSD, 64GB DDR4 ECC RAM per

8We made some changes to the STAMP benchmarks; namely, modernizing
the code using C11 standard library atomics, and padding 32-bit floating-
point variables to avoid word aliasing on 64-bit systems. We also fixed
numerous resource leakage and correctness bugs (§5.5), some of which
were identified by previous work [23, 37]. Where necessary, we moved local
variable declarations to be within repair handlers, and adjusted control-flow
into single-entry single-exit regions for ease of annotation.
9This includes the operation log, origin tracking, write history, etc.

Category High/High Mixed
Benchmark(s) array bayes, genome
Abort Rate ≥ 60% 20% to 60%
Avg. Wasted Work ≥ 6 ≥ 5
Speedup vsMutex up to 1.62x up to 2.95x
Abort Reduction

vs TardisTM-None 61% to 78% 34% to 93%

Speedup vs
TardisTM-None up to 2.78x up to 1.26x

Table 2. Benchmarks, characteristics, and TardisTM improve-
ments by category.

socket, and 2x Intel Xeon E5-2683v4 CPUs at 2.6GHz, run-
ning Debian 10 with Linux kernel 4.12.6-1 and GCC 8.3.0-6.10
All experiments were averaged over 10 runs, with speedup
error bars set to one standard deviation.

5.1 Benchmark Characterization
We characterize the repair potential for these benchmarks by
measuring transaction cycles (using rdtscp) underTardisTM-
None, and computing the following metrics:

Average Wasted Work = log10

(∑
Threads

Aborted TX Cycles
Aborts

)

Abort Rate =
∑

Threads

Aborts
Aborts + # Commits

We show the results in Figures 4a and 4b, respectively,
which we use to roughly categorize our benchmarks as
follows: High/High, where we expect significant speedups
(§5.2),Mixed, where we expect moderate speedups (§5.3), and
Low/Low (omitted), which are summarized in Table 2. Ob-
serve that for each benchmark, higher thread count increases
both metrics, due to an increased probability of conflict.

5.2 Case #1: High Wasted Work, High Abort Rate
Our array benchmark (Listing 1) falls into this category.
Conflicts in array occur when concurrent transactions ac-
cess and modify values at the same array index. Instead of
aborting, TardisTM uses a manual delayed repair handler
to perform incremental repair, shown earlier in Listing 2.
As shown in Figure 5a, TardisTM achieves a speedup

of up to 1.62x compared toMutex, and is consistently the
fastest among the compared systems on array. Surprisingly,
TardisTM-None, GCC, and TinySTM almost always per-
formed worse than Mutex, likely due to frequent aborts.
10For the STAMP benchmarks, we used the ‘++’ configuration, and for
genome, we also increased the batching factor from 12 to 100 hashtable
insertions per transaction. For array, we used an array of size 1024, with
10000 transactions per thread, 1000 operations per transactions, 25% read-
only operations, and a spin value of 1000.

6

TardisTM: Incremental Repair for Transactional Memory PMAM’20, February 22, 2020, San Diego, CA, USA

0
1
2
3
4
5
6
7
8
9
10

2

4

8

16

32

64

(a) Average wasted work (defined in §5.1).

0%

20%

40%

60%

80%

100%

2

4

8

16

32

64

(b) Abort rate (defined in §5.1).

Figure 4. Average wasted work and abort rate on TardisTM-None, for each of the benchmarks, with 2 to 64 threads.

0

0.5

1

1.5

2

2 4 8 16 32 64

TinySTM TardisTM-None TardisTM

GCC GCC-RTM

(a) array.

0

0.5

1

1.5

2

2.5

2 4 8 16 32 64

TinySTM TardisTM-None TardisTM

GCC GCC-RTM

(b) genome.

0

1

2

3

4

2 4 8 16 32 64

TinySTM TardisTM-None TardisTM

GCC GCC-RTM

(c) bayes.

Figure 5. Speedups of each TM system relative toMutex, as a function of thread count, for array, bayes, and genome.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

2

4

8

16

32

64

(a) Abort reduction.

0

0.5

1

1.5

2

2.5

3

3.5

2

4

8

16

32

64

(b) Speedup.

Figure 6. Abort reduction and speedup of TardisTM over TardisTM-None, for each of the benchmarks, with 2 to 64 threads.

Compared with TardisTM-None, TardisTM achieves an
abort reduction of between 61% and 78% (Figure 6a) and a
speedup of up to 2.78x (Figure 6b).

5.3 Case #2: Mixed Wasted Work and Abort Rate
Two benchmarks, genome and bayes, fall into this category.

genome: This program performs batched reassembly of
textual DNA segments for genome sequencing. Fragments
are inserted into a fixed-size hashtable, which is equivalent
to a membership check on the bucket linked-list, followed
by insertion if not present. Because the return value of the
hashtable insertion is never checked, repair can be fully
delegated to the underlying annotation, shown in Listing 3.

Conflicts during linked-list insertion can occur at three
different positions: (1) within the operation to find the pre-
decessor, (2) when reading the predecessor, or (3) when in-
crementing the list size. All can be repaired by updating the
predecessor if changed (line 6), reverting all reads/writes
from the current invocation (line 7), and re-inserting (line 9).
As shown in Figure 5b, TardisTM achieves a speedup,

starting at 8 threads, of up to 1.92x compared toMutex. In
contrast, GCC and GCC-RTM perform worse thanMutex,
whereas TinySTM and TardisTM-None perform better, but
still worse thanTardisTM. ComparedwithTardisTM-None,
TardisTM achieves an abort reduction of between 34% and
93% (Figure 6a) and a speedup of up to 1.22x (Figure 6b).

7

PMAM’20, February 22, 2020, San Diego, CA, USA Daming D. Chen, Phillip B. Gibbons, and Todd C. Mowry

1 void list_insert(list_t *listPtr, void *dataPtr) {
2 node_t *prevPtr = NULL, *nodePtr = NULL;
3

4 tardistm_repair_t repair(tardistm_conflict_t c) {
5 if (c.recursive && TARDISTM_OP_ID(c.prev_op) ==

LIST_PREVIOUS)↩→
6 prevPtr = c.conflict.rv.ptr;
7 TARDISTM_REVERT_RW(c.current_op);
8 TARDISTM_FINISH_REPAIR();
9 goto insert;
10 }
11

12 prevPtr = LIST_PREV(listPtr, dataPtr); // (1)
13 nodePtr = LIST_ALLOC_NODE(dataPtr);
14 insert:
15 nodePtr->nextPtr = prevPtr->nextPtr; // (2)
16 prevPtr->nextPtr = nodePtr; // (2)
17 listPtr->size += 1; // (3)
18 }

Listing 3. Implementation and just-in-time repair for a simplified
linked-list insertion (LIST_INSERT) abstract operation.

‐100%

‐50%

0%

50%

100%

150%

Origin + OpLog + NoRepair + YesRepair

Figure 7. Cumulative overhead at 4 threads of TardisTM over
TardisTM-None as runtime tracking features (and finally actual
repair) are enabled, for each of the benchmarks.

bayes: This programperforms bayesian inference by search-
ing for the edge between variables that maximizes prediction
log-likelihood [5]. The search is transactional, and may con-
flict when log-likelihood estimates are concurrently updated.
However, because these values always increase monotoni-
cally, conflicts do not affect the best edge unless the baseline
increases to make it invalid. Thus, repair typically only needs
to increment the final score by the improvement.

As shown in Figure 5c,TardisTM achieves a speedup of up
to 2.95x compared toMutex. These speedups are occasion-
ally matched by TinySTM and TardisTM-None, whereas
both GCC and GCC-RTM barely perform better thanMutex.

Compared with TardisTM-None, TardisTM achieves an
abort reduction of between 41% and 76% (Figure 6a) and a
speedup of up to 1.26x (Figure 6b). However, these results
should be taken cautiously, given the high variance and non-
deterministic behavior of bayes observed by past work [37].

5.4 Overhead
Runtime tracking is required for repair, which imposes over-
head on all transactions regardless of whether they abort
or commit. To measure this, we show performance while
cumulatively enabling tracking in Figure 7, using 4 threads.
The results show that incremental repair improves perfor-
mance when enabled (YesRepair) compared to when not
enabled (NoRepair), across all but kmeans-low, labyrinth,
and ssca2. However, this improvement does not necessarily
exceed the overhead of origin tracking (Origin), operation
logging (OpLog), and other repair-related code (NoRepair)
at 4 threads. Although we do expect absolute speedups to
increase with greater thread count, based on our previous
figures, we observe that overall repair effectiveness is af-
fected by a variety of factors, including repair cost, number
of repairs, and the repair success rate, as all repairs must
complete successfully for a transaction to avoid aborting.

5.5 Discussion
As shown in Figure 6a, TardisTM achieves significant reduc-
tions in abort rates across benchmarks and thread counts,
compared to TardisTM-None (Figure 4b). However, this
large reduction often does not result in any speedups (Fig-
ure 6b), due to repair overhead (§5.4).11 We do not expect
speedups on the remaining benchmarks (kmeans, intruder,
ssca2, vacation, and yada), due to low abort rate or low
wasted work. Some are dominated by small transactions (e.g.
kmeans, ssca2), where repair overhead exceeds abort cost,
whereas others (e.g. intruder, yada) contain data structures
that are impractical to repair incrementally, despite our au-
tomated replay repair. For example, insertion/deletion on a
red-black tree can involve recursive rebalancing, which may
affect all subsequent operations.
Another contributing factor is that the STAMP bench-

marks have been restructured for TM. For example, intruder
has been split into two transactions that pass data non-
transactionally: one solely dequeues an element, whereas the
other performs packet reassembly on it. Others perform non-
transactional operations within transactions, which is unsup-
ported by transactional compilers like GCC12, and resulted in
many correctness bugs that we fixed. These include memory
leaks and use-after-free bugs involving non-transactional
dynamically-allocated memory operations, as well as non-
transactional writes that are unobservable within transac-
tions, or irreversible when the transaction aborts. Neverthe-
less, some of the programming models and data structures
used by the STAMP benchmarks are suboptimal, which ad-
versely affects scaling with increased thread count [30].

11labyrinth relies entirely on privatization and manual aborts [47], which
bypasses both transactional conflict detection and our repair mechanism.
12Under GCC and GCC-RTM, all operations in transactions were executed
transactionally.

8

TardisTM: Incremental Repair for Transactional Memory PMAM’20, February 22, 2020, San Diego, CA, USA

Program array bayes genome intruder kmeans
Repair loc 47 189 61 232 130
Program labyrinth lib ssca2 vacation yada
Repair loc N/A 1780 56 438 368

Table 3. Repair size upper bounds, in lines of code (loc).

5.6 Repair Annotations
We implemented 76 repair annotations total, of which 69
were manual repairs. Estimated sizes are shown in Table 3,
with STAMP’s internal data structure library listed as lib.
This includes debug code and disabled annotations that were
difficult to automatically exclude; for example, the core repair
for array from Listing 2 amounts to 13 loc, instead of 47 loc.

6 Related Work
We provide an overview of related work on transactional
conflicts, which we categorize as follows. As mentioned pre-
viously in §1, these are orthogonal to TardisTM, because
none support general transaction repair.

Contention Management: A contention manager dy-
namically handles conflicts. Policies include waiting with
exponential backoff [20], based on work performed [41],
aborting based on work performed [41], and prioritizing
based on earliest original start time [16].

Transaction Scheduling: A scheduling mechanism de-
termineswhen transactions start or commit. Decisions can be
made based on contention [50] or commit ordering [1, 35, 38].

Abort Impact Reduction: Transactions are structured
to minimize abort effects. Transactional checkpoints [24] par-
tially abort to user-defined rollback points, whereas hard-
ware pre-abort handlers [33] partially commit and fall back
to software. Nested transactions [29] scope aborts to that of
the innermost affected transaction. Open nesting and closed
nesting differ in the visibility of committed child transactions,
whereas abstract nesting [18] may delay restart of aborted
child transactions.

Conflict Reduction: The conflict detection algorithm
can avoid certain conflict types. Value-based conflict detec-
tion [6, 11, 32] is impervious to timestamp conflicts from
lock aliasing. Subsequent work [39] adds first-class compari-
son and increment primitives that support semantic-aware
recomputation. RetCon [2] performs hardware symbolic re-
computation using program slicing, but is limited by com-
plex expressions or control-flow changes.Multi-version mem-
ory [10, 27, 34] allows concurrent transactions with different
memory versions, but may ultimately need reconciliation.
Semantic commutativity [48] can avoid conflicts that se-

mantically commute. These include an approach using open
nesting [31], a model [25] for coarse-grained transactions, a
commutativity lattice [26] for reasoning about commutativity

conditions, a method [4] for retrofitting abstract locks, hard-
ware support [51] for commutative operations, a composi-
tional transactional data structure library [44], and datatype-
level transactional semantics [22].

Alternatively, parameterized atomic blocks [45] allow hard-
ware to ignore certain conflicts on a per-transaction basis,
and early release [20] allows manual removal of read set
entries, which can be useful for linear data structures [43].

7 Conclusion
In this paper, we introduced TardisTM, a software TM that
supports incremental repair. We find that repair is especially
useful for workloads with high abort rate and wasted work,
achieving up to 1.62x speedup over mutual exclusion and
78% abort reduction over baseline, on array. Repair is also
useful for workloadswithmixed abort rates andwastedwork,
reaching up to 2.95x speedup over mutual exclusion and 93%
abort reduction over baseline on the STAMP benchmarks.

Given the trade-offs between runtime overhead and repair
capability, we are interested in exploring improvements as
future work. For example, a hardware-based repair mecha-
nism would significantly reduce the overhead of our current
approach. In addition, statically pre-computed repairs using
program slicing could eliminate user-defined repair handlers
and runtime dependency tracking.

Acknowledgments
This work was supported in part by the National Science
Foundation, and by the Department of Defense through the
National Defense Science & Engineering Graduate Fellow-
ship Program. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect those of the sponsors.
We would like to thank Chris Fallin and Pratik Fegade

for their suggestions, as well as the Parallel Data Lab, Guy
Blelloch, Sol Boucher, Thomas Kim, and Dave Andersen, for
access to additional computational resources.

References
[1] Utku Aydonat and Tarek S. Abdelrahman. 2008. Serializability of

Transactions in Software Transactional Memory. In TRANSACT ’08.
ACM.

[2] Colin Blundell, Arun Raghavan, and Milo M.K. Martin. 2010. RETCON:
Transactional Repair Without Replay. In ISCA ’10. ACM, 258–269.

[3] Thomas M. Breuel. 1988. Lexical Closures for C++. In C++ Conference.
USENIX, 293–304.

[4] Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun.
2010. Transactional Predication: High-Performance Concurrent Sets
and Maps for STM. In PODC ’10. ACM, 6–15.

[5] David Maxwell Chickering, David Heckerman, and Christopher Meek.
1997. A Bayesian Approach to Learning Bayesian Networks with Local
Structure. In UAI ’97. AUAI, 80–89.

[6] Luke Dalessandro, Michael F. Spear, and Michael L. Scott. 2010. NOrec:
Streamlining STM by Abolishing Ownership Records. In PPoPP ’10.
ACM, 67–78.

9

PMAM’20, February 22, 2020, San Diego, CA, USA Daming D. Chen, Phillip B. Gibbons, and Todd C. Mowry

[7] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco, Mark
Moir, and Daniel Nussbaum. 2006. Hybrid Transactional Memory. In
ACM Sigplan Notices, Vol. 41. ACM, 336–346.

[8] Al Danial. [n.d.]. cloc. https://github.com/AlDanial/cloc

[9] DaveDice, Ori Shalev, andNir Shavit. 2006. Transactional Locking II. In
Distributed Computing, David Hutchison, Takeo Kanade, Josef Kittler,
Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor,
Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan,
Demetri Terzopoulos, Dough Tygar, Moshe Y. Vardi, Gerhard Weikum,
and Shlomi Dolev (Eds.). Vol. 4167. Springer Berlin Heidelberg, 194–
208.

[10] Nuno Diegues and Paolo Romano. 2014. Time-Warp: Lightweight
Abort Minimization in Transactional Memory. In PPoPP ’14. ACM,
167–178.

[11] Chen Ding, Xipeng Shen, Kirk Kelsey, Chris Tice, Ruke Huang, and
Chengliang Zhang. 2007. Software Behavior Oriented Parallelization.
In PLDI ’07. ACM, 223–234.

[12] Aleksandar Dragojević, Rachid Guerraoui, and Michal Kapalka. 2009.
Stretching Transactional Memory. In PLDI ’09. ACM, 155–165.

[13] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. 1976. The
Notions of Consistency and Predicate Locks in a Database System.
Commun. ACM 19, 11 (Nov. 1976), 624–633.

[14] P. Felber, C. Fetzer, P. Marlier, and T. Riegel. 2010. Time-Based Software
Transactional Memory. IEEE Transactions on Parallel and Distributed
Systems 21, 12 (Dec. 2010), 1793–1807.

[15] Anthony Green. [n.d.]. Libffi. https://sourceware.org/libffi/

[16] Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. 2005. Toward
a Theory of Transactional Contention Managers. In PODC ’05. ACM,
258–264.

[17] P. Hammarlund, A. J. Martinez, A. A. Bajwa, D. L. Hill, E. Hallnor, H.
Jiang, M. Dixon, M. Derr, M. Hunsaker, R. Kumar, R. B. Osborne, R.
Rajwar, R. Singhal, R. D’Sa, R. Chappell, S. Kaushik, S. Chennupaty,
S. Jourdan, S. Gunther, T. Piazza, and T. Burton. 2014. Haswell: The
Fourth-Generation Intel Core Processor. IEEE Micro 34, 2 (March 2014),
6–20.

[18] Tim Harris. 2007. Abstract Nested Transactions. In TRANSACT ’04.
ACM, 10.

[19] Maurice Herlihy and Eric Koskinen. 2008. Transactional Boosting: A
Methodology for Highly-Concurrent Transactional Objects. In PPoPP
’08. ACM, 207.

[20] MauriceHerlihy, Victor Luchangco,MarkMoir, andWilliamN. Scherer,
III. 2003. Software Transactional Memory for Dynamic-Sized Data
Structures. In PODC’03. ACM, 92–101.

[21] Maurice Herlihy and J. Eliot B. Moss. 1993. Transactional Memory:
Architectural Support for Lock-Free Data Structures. In ISCA ’93. ACM,
289–300.

[22] Nathaniel Herman, Jeevana Priya Inala, Yihe Huang, Lillian Tsai, Eddie
Kohler, Barbara Liskov, and Liuba Shrira. 2016. Type-Aware Transac-
tions for Faster Concurrent Code. In EuroSys ’16. ACM, 31:1–31:16.

[23] Gokcen Kestor, Osman S. Unsal, Adrian Cristal, and Serdar Tasiran.
2014. T-Rex: A Dynamic Race Detection Tool for C/C++ Transactional
Memory Applications. In EuroSys ’14. ACM, 20:1–20:12.

[24] Eric Koskinen and Maurice Herlihy. 2008. Checkpoints and Continua-
tions Instead of Nested Transactions. In SPAA ’08. ACM, 160–168.

[25] Eric Koskinen, Matthew Parkinson, andMaurice Herlihy. 2010. Coarse-
Grained Transactions. In POPL ’10. ACM, 19–30.

[26] Milind Kulkarni, Donald Nguyen, Dimitrios Prountzos, Xin Sui, and
Keshav Pingali. 2011. Exploiting the Commutativity Lattice. In ACM
SIGPLAN Notices, Vol. 46. ACM, 542–555.

[27] Heiner Litz, David Cheriton, Amin Firoozshahian, Omid Azizi, and
John P. Stevenson. 2014. SI-TM: Reducing Transactional Memory
Abort Rates through Snapshot Isolation. In ASPLOS’14. ACM, 383–
398.

[28] Chi Cao Minh, JaeWoong Chung, C. Kozyrakis, and K. Olukotun. 2008.
STAMP: Stanford Transactional Applications for Multi-Processing. In
IISWC ’08. IEEE, 35–46.

[29] J. E.B. Moss. 1985. Nested Transactions: An Approach to Reliable Dis-
tributed Computing. Massachusetts Institute of Technology.

[30] Donald Nguyen and Keshav Pingali. 2017. What Scalable Programs
Need from Transactional Memory. In ASPLOS’17. ACM, 105–118.

[31] Yang Ni, Vijay S. Menon, Ali-Reza Adl-Tabatabai, Antony L. Hosking,
Richard L. Hudson, J. Eliot B. Moss, Bratin Saha, and Tatiana Shpeis-
man. 2007. Open Nesting in Software Transactional Memory. In PPoPP
’07. ACM, 68–78.

[32] Marek Olszewski, Jeremy Cutler, and J. Gregory Steffan. 2007. Ju-
doSTM: A Dynamic Binary-Rewriting Approach to Software Transac-
tional Memory. In PACT ’07. IEEE, 365–375.

[33] Sunjae Park, Christopher J. Hughes, and Milos Prvulovic. 2018. Trans-
actional Pre-Abort Handlers in Hardware Transactional Memory. In
PACT ’18. ACM, 33:1–33:11.

[34] Dmitri Perelman, Rui Fan, and Idit Keidar. 2010. On Maintaining
Multiple Versions in STM. In PODC ’10. ACM, 16–25.

[35] Hany E. Ramadan, Indrajit Roy, Maurice Herlihy, and Emmett Witchel.
2009. Committing Conflicting Transactions in an STM. In PPoPP ’09.
ACM, 163–172.

[36] Torvald Riegel, Pascal Felber, and Christof Fetzer. 2006. A Lazy Snap-
shot Algorithm with Eager Validation. In DISC’06. Springer-Verlag,
284–298.

[37] Wenjia Ruan, Yujie Liu, and Michael Spear. 2014. STAMP Need Not
Be Considered Harmful. In TRANSACT’14. ACM.

[38] Mohamed M. Saad, Masoomeh Javidi Kishi, Shihao Jing, Sandeep Hans,
and Roberto Palmieri. 2019. Processing Transactions in a Predefined
Order. In PPoPP ’19. ACM, 120–132.

[39] MohamedM. Saad, Roberto Palmieri, Ahmed Hassan, and Binoy Ravin-
dran. 2016. Extending TM Primitives Using Low Level Semantics. In
SPAA ’16. ACM, 109–120.

[40] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi CaoMinh,
and Benjamin Hertzberg. 2006. McRT-STM: A High Performance
Software Transactional Memory System for a Multi-Core Runtime. In
PPoPP ’06. ACM, 187–197.

[41] William N. Scherer, III and Michael L. Scott. 2005. Advanced Con-
tention Management for Dynamic Software Transactional Memory.
In PODC ’05. ACM, 240–248.

[42] Nir Shavit and Dan Touitou. 1995. Software Transactional Memory.
In PODC ’95. ACM, 204–213.

[43] Travis Skare and Christos Kozyrakis. 2006. Early Release: Friend or
Foe?. In WTW ’06. ACM.

[44] Alexander Spiegelman, Guy Golan-Gueta, and Idit Keidar. 2016. Trans-
actional Data Structure Libraries. In PLDI’16. ACM, 682–696.

[45] Ruben Titos-Gil, Manuel E. Acacio, Jose M. Garcia, Tim Harris, Adrian
Cristal, Osman Unsal, Ibrahim Hur, and Mateo Valero. 2012. Hardware
Transactional Memory with Software-Defined Conflicts. ACM Trans.
Archit. Code Optim. 8, 4 (Jan. 2012), 31:1–31:20.

[46] Linus Torvalds. [n.d.]. Git. https://git-scm.com

[47] I. Watson, C. Kirkham, and M. Lujan. 2007. A Study of a Transactional
Parallel Routing Algorithm. In PACT ’07. IEEE, 388–400.

[48] W. E. Weihl. 1988. Commutativity-Based Concurrency Control for
Abstract Data Types. IEEE Trans. Comput. 37, 12 (Dec. 1988), 1488–
1505.

[49] Mark Weiser. 1981. Program Slicing. In ICSE ’81. IEEE, 439–449.
[50] Richard M. Yoo and Hsien-Hsin S. Lee. 2008. Adaptive Transaction

Scheduling for Transactional Memory Systems. In SPAA ’08. ACM,
169–178.

[51] G. Zhang, V. Chiu, and D. Sanchez. 2016. Exploiting Semantic Com-
mutativity in Hardware Speculation. In MICRO ’16. IEEE, 1–12.

10

https://github.com/AlDanial/cloc
https://sourceware.org/libffi/
https://git-scm.com

	Abstract
	1 Introduction
	2 Background: Software-based TM
	3 Design: TardisTM
	3.1 Principles
	3.2 Overview
	3.3 Conflict Localization: Abstract Operations
	3.4 Dependency Resolution: Origin Tracking
	3.5 Incremental Repair
	3.6 Temporal Conflict Detection
	3.7 Dynamically-Allocated Memory

	4 Implementation
	4.1 Abstract Operations
	4.2 Just-in-Time Repair
	4.3 Adaptive Execution

	5 Evaluation
	5.1 Benchmark Characterization
	5.2 Case #1: High Wasted Work, High Abort Rate
	5.3 Case #2: Mixed Wasted Work and Abort Rate
	5.4 Overhead
	5.5 Discussion
	5.6 Repair Annotations

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

