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CHAPTER 1

Introduction

Many computer programs written in unsafe languages like C and C++ perform low-
level memory operations involving pointers, which may accidentally introduce memory
safety bugs [142] due to developer error. Common examples of these bugs include buffer
overflows, use-after-frees, and double frees, which can all be used by attackers to exploit
programs. Indeed, statistics from both Google Chrome [1] and Microsoft [105] have
shown that ~70% of all security vulnerabilities in their products involve memory safety
bugs. Recent research [61, 122, 162] has also demonstrated that these bugs can affect
programs written in safe languages like Rust that may contain unsafe code.

Past work has proposed various strategies to detect or mitigate such bugs. These
include adding runtime checks (§2.1), randomizing program layout to hide data (§2.2),
and validating program execution against models of expected program behavior (§2.3,
§2.4). Nevertheless, many of these proposals suffer from high runtime overhead, brittle
designs, and/or imprecise analyses, which limits their efficiency and effectiveness.

Past work has also developed various methods for measuring the impact of these
and other security bugs. Of particular interest are embedded devices, which are widely-
deployed and occupy a privileged network position, yet are rarely-updated and riddled
with security bugs. One approach is internet-scale scanning (§2.5), which requires a fea-
sible network search space, and that remote hosts be both online and remotely-accessible.
Another is firmware analysis (§2.6), but which may not accurately model runtime inter-
actions involving multiple programs and scripts.

This thesis addresses these problems as follows: First, we show that emulation can
be used to automatically measure the impact of software vulnerabilities in embedded devices.
Second, we develop scalable protections for memory safety bugs in common software platforms,
and quantify our improvements in terms of correctness, effectiveness, and performance. We
provide an overview of our contributions and proposed work below:

(1) We build FIRMADYNE [32], a system that enables large-scale dynamic analysis of
Linux-based embedded devices, and use it to measure the prevalence of various
vulnerabilities–including memory safety bugs–across our dataset, as described in §3.

(2) We develop multiple mechanisms for mitigating memory safety bugs by protecting
program integrity. In §4, we extend control-flow integrity to WebAssembly1, and in
§5, we design HerQules, an integrity framework that leverages hardware-enforced
message queues (under submission).

(3) We propose to extend integrity protections to program memory safety, and outline a
timeline for this thesis, in §6.

1https://reviews.llvm.org/D87258
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CHAPTER 2

Background

2.1. Memory Safety

Early work proposed various mitigation strategies to defend against memory ac-
cess bugs, either by preventing risky behavior or checking for overflows. These include
stack canaries [41], no-execute memory [146] (NX or Data Execution Prevention), and
W^X [147], all of which are now commonplace.

Subsequent work has focused directly on detecting [138] these memory access bugs
at runtime. Many spatial memory safety approaches add bounds checking to detect out-
of-bounds accesses. Both pointer- and object-based designs ensure that each pointer
or access refers to the correct object, whereas location-based designs only ensure that
each access refers to a valid object. Pointer-based designs track boundaries either by
storing them within the pointers themselves, known as fat pointers [74, 89, 93, 112], or
by storing metadata separately [55, 56, 109] using an associative data structure. How-
ever, certain work [74, 112] relies on modifications to the language type system, which
may require programs be rewritten. Object-based designs [11, 52, 87, 127, 164] instead
store boundaries in each object, but may need to insert additional padding to support
one-past-the-end pointers that are valid when not dereferenced. Location-based ap-
proaches [78, 79, 132] track memory validity and/or place guard regions adjacent to each
object. Alternative hardware-based designs [50, 116, 161] reduce overhead of software-
based designs by offloading bounds checking and/or storage.

Temporal memory safety defends against orthogonal use-after-free and double free
bugs, which occur when dynamically-allocated memory is accessed after being freed,
or memory is freed twice, respectively. Proposed solutions include eliminating dan-
gling pointers [94, 158] to freed memory, and checking memory validity upon derefer-
ence [110]. Some designs provide both spatial and temporal memory safety, whether in
hardware [51, 111, 128, 169] or in software [24, 113] via dynamic binary instrumentation.

2.2. Information Hiding

Another mitigation strategy is information hiding, which provides probabilistic secu-
rity. Runtime randomization of program content [36, 119] or layout [16, 17, 83, 146] has
been used to deter exploitation and protect sensitive data. Common strategies include
Address Space Layout Randomization; however, side-channel [72, 131, 135, 140] or other
information disclosure attacks have been used to defeat information hiding. In response,
various countermeasures have been proposed, including rerandomization [19, 155, 160],
execute-only memory [13, 42, 143], and guard pages.

2



2.3. CONTROL-FLOW INTEGRITY 3

2.3. Control-Flow Integrity

Control-flow integrity [7, 26] (CFI) mitigates certain memory safety bugs by ensur-
ing the integrity of transition edges on the program control-flow graph (CFG). Forward
edges occur at branch, jump, or call instructions, and depending on whether the desti-
nation is statically identifiable, can either be direct or indirect. Backward edges occur at
return instructions that resume execution in the calling function.

2.3.1. Coarse-Grained CFI. Coarse-grained designs approximate the control flow
of a program using a limited number of equivalence classes. Some use one equiva-
lence class for all address-taken functions, including Microsoft’s Control Flow Guard [4]
(MSCFG) and the Indirect Branch Tracking (IBT) component of Intel’s Control Enforce-
ment Technology [2, 134] (CET). Others form equivalence classes based on call target
type [166, 168] or callee arity [148]. Modern Clang/LLVM CFI [37] uses the callee’s
language-level type, generating checks using bitmasks against aligned jump tables for
each equivalence class. We observe in §5 that it has low overhead, but exhibits false
positives, and requires recompiling with link-time optimization, like many other de-
signs, which can increase compilation time. By default, casted pointer types are strictly
matched, which increases false positives, although this behavior can be altered using
additional compiler flags or a manual allowlist, which were not tested.

Coarse-grained approaches are the most widely-deployed due to their low overhead,
but are vulnerable to code-reuse attacks [21, 28, 46, 68, 69], like return-oriented pro-
gramming [31, 133] and jump-oriented programming [21]. MSCFG has been included
since Windows 8.1 [144], though it was vulnerable to a now-patched design flaw [20],
and is to be replaced [121] by CET in future Windows 10 releases. Google Chrome and
certain Android devices [5, 149, 150] are built with modern Clang/LLVM CFI. ARM
has added Branch Target Identification as an optional processor feature since ARMv8.5-
A [73], which supports three equivalence classes.

2.3.2. Fine-Grained CFI. Fine-grained designs improve control flow precision by in-
corporating a context-sensitive analysis at each call site. These include object origin [88],
pointer integrity (§2.3.2.1), and call paths.

Path-sensitive methods examine each potential caller on the call path to a given func-
tion, but since the total number of paths grows exponentially, some approximation or
hardware acceleration is still necessary. Various mechanisms used by past work include
hardware-accelerated path recording (e.g. Intel Last Branch Records [152], or Processor
Trace [53, 75, 100]), call path merging [114, 152], and/or limiting checks to certain sensi-
tive system calls (e.g. sigaction, mmap, mprotect, etc.) [53, 152]. In response, attacks [63]
have evolved to target the inherent undecidability [123] of pointer aliasing.

2.3.2.1. Pointer Integrity. Pointer integrity is a state-of-the-art fine-grained approach
that protects the values of sensitive pointers, which avoids approximation and ensures
maximum context sensitivity by using a singleton equivalence set for each call site.

Code Pointer Integrity [91] (CPI) uses a recursive definition to identify sensitive
pointers that can include certain data pointers, and places them in a separate safe pointer
store (SPS). It also tracks and checks object boundaries to prevent buffer overflows from
corrupting adjacent store entries. To protect return pointers, it places them on a safe
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stack (§2.3.3). Initially, information hiding was used to protect both the safe store and
the safe stack, but such hiding was shown [62, 70] vulnerable to disclosure attacks, and
later replaced [92] with software fault isolation [154] for the SPS, at the cost of additional
overhead. We observe in §5) that their final design has moderate overhead but causes
many programs to crash or hang, does not implement proposed temporal safety checks,
requires recompiling with LTO, and cannot be easily composed with existing binaries
without adding abstraction (and hence overhead) to the SPS.

Cryptographically Enforced CFI [102] (CCFI) computes a message authentication
code (MAC) for each sensitive pointer, which is stored in memory and rechecked upon
use. The MAC uses a single round of the Advanced Encryption Standard (AES) block
cipher, and includes various pointer properties, including its address, value, and certain
metadata (e.g. class, language type). Hardware-accelerated AES instructions are used to
improve performance. To prevent forgery and replay attacks, the expanded AES key is
stored in eleven reserved XMM registers, and a random offset is injected into each stack
frame to act as a nonce. We observe in §5 that their approach has significant overhead,
uses a non-standard AES construction1, requires recompilation with LTO, breaks calling
conventions with all existing code, cannot invalidate MACs to detect use-after-free bugs,
uses a fixed secret key of zero, and exhibits significant false positives.

Other related work, in both academia [97, 98] and industry [104], has used ARM’s
Pointer Authentication (PA) to implement pointer integrity. However, Apple’s design [104]
is a cryptographic MAC-based approach that provides even lower precision than CCFI,
and also lacks use-after-free detection. For compatibility reasons, it omits the address
of the sensitive pointer in the MAC computation, which allows replay attacks. As a
workaround, it supports a separate discriminator to be used as a nonce, however their
implementation uses a constant discriminator of zero for function pointers and C++ vir-
tual table pointers. It is also specific to Apple’s software and hardware, which are not
accessible externally for development and testing, and was shown [12] vulnerable to a
now-patched flaw that allowed MAC forgery.

2.3.3. Return Pointers. When a function is called, some architectures save return
pointers on the stack, which can allow corruption and race attacks in multi-threaded
programs. Coarse-grained approaches (§2.3.1), which many only check that e.g. the
return address is preceded by a call instruction, are vulnerable to code-reuse attacks.

Subsequent works use shadow stacks [27, 45, 64, 134], which improve protecting by
placing return pointers on a separate stack. Software-based approaches like Microsoft’s
Return Flow Guard [18] (MSRFG) protect this stack with information hiding, but are vul-
nerable to side channel or information disclosure attacks. Hardware-based approaches,
including the shadow stack component of CET, solve these problems using special mem-
ory pages that are otherwise inaccessible.

Code Pointer Integrity [91] proposed a software safe stack [92], containing all objects
that may overflow. It defeats some attacks [39] and has been adopted by Clang/LLVM [37],
which adds guard pages to detect overflow. Despite low overhead, safe stack is vulnera-
ble [70] to information disclosure attacks, and was disabled [151] in Google Chrome for
this reason.

1The official AES-128 block cipher requires 10 rounds.
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2.4. Data-flow Integrity

Non-control-data attacks [29, 33, 84, 85, 129] utilize memory safety bugs to modify
program behavior without directly altering control flow. For example, changes to pro-
gram data can indirectly influence evaluation of conditional expressions, or affect the
semantics of system call arguments, all of which are not protected by CFI.

Data-flow integrity [30] is an analogue of control-flow integrity that computes static
reaching definitions for each memory location using pointer analysis, and checks each
read at runtime to ensure that the last definition was a member of the corresponding
equivalence class. To protect the runtime definitions table, it uses software fault isola-
tion, which requires instrumenting all memory writes. For intra-procedural analysis,
it is flow-sensitive, and for inter-procedural analysis, it is context-insensitive, but nei-
ther are field-sensitive, which renders it unable to distinguish between different fields
within a composite type. Subsequent work has applied this technique to protect ker-
nel access control data [136], or developed [137] hardware implementations with better
performance.

2.5. Internet-Scale Scanning

Internet-scale scanning non-invasively queries remote hosts for metadata, to deter-
mine if they may be affected by a given security vulnerability. However, scaling to IPv6

networks is challenging [108] due to the increased address space, and scanning requires
that remote hosts be both online and remotely-accessible. Using tools like Censys [59],
Masscan [71], Nmap [101], and ZMap [57], researchers have identified embedded devices
with default access credentials [43], hosts that use vulnerable cryptographic keys [81],
popular sites vulnerable to Heartbleed [58] and LogJam [8], and misissued TLS certifi-
cates [90].

2.6. Firmware Analysis

A variety of techniques have been used for firmware analysis. One common large-
scale approach is static analysis, which examines the contents of firmware images with-
out emulating or executing any programs. Past work has identified hardcoded SSL [80],
SSH [107], and other [14] private keys, as well as backdoors and other security vulnera-
bilities [40] in commodity firmware.

Another technique is dynamic analysis; although it is more precise, it is less com-
monly used because it may require [165] analysts to obtain the physical hardware and
manually interface with a debugging port on the device. Other techniques combine both
using hybrid emulation [96], or symbolic execution [47].

Manual analysis has also aided in the discovery of specific vulnerabilities that affect
various classes of embedded devices. These include LaserJet printers [44], cellular base-
bands [157], remote server management [22], and USB-attached peripherals [103, 115].



CHAPTER 3

Scalable dynamic analysis for Linux-based embedded devices

With the proliferation of the “Internet of Things”, an increasing number of embedded
devices are being connected to the Internet at an alarming rate. Commodity networking
equipment such as routers and network-attached storage boxes are joined by IP cameras,
thermostats, or even remotely-controllable power outlets. Nevertheless, many of these
devices are controlled by vendor and chipset-specific firmware that is rarely, if ever, up-
dated to address security vulnerabilities affecting these devices. Unfortunately, the poor
security practices of these device vendors are only further exacerbated by the privileged
network position that many of these devices occupy. For example, a wireless router
is frequently the first and only line of defense between a user’s computing equipment
(e.g., laptops, mobile phones, and tablets) and the Internet. Since most vendors have not
taken any initiative to improve the security of their devices, millions of home and small
business networks are left vulnerable to both known and unknown threats.

To overcome these shortcomings, we develop FIRMADYNE, which leverages software-
based full system emulation to enable large-scale automated dynamic analysis of com-
modity Linux-based embedded firmware. Our approach does not require network scan-
ning (§2.5) or physical hardware (§2.6), allowing it to scale with additional computational
resources. Additionally, our emulation approach enables dynamic analysis regardless of
the underlying programming language, and provides actionable results in the form of
a successful exploit for any given vulnerability. In doing so, we address a number of
challenges that are characteristic of embedded devices, such as the presence of various
hardware-specific peripherals, storage of persistent configuration in non-volatile mem-
ory (NVRAM), and dynamically-generated configuration files.

3.1. Design

3.1.1. Motivation. Dynamic analysis for embedded firmware can be performed at
different levels of the abstraction hierarchy. In this section, we discuss a selection of
potential vantage points, illustrate challenges and shortcomings for each, and argue
why full system emulation is the most promising approach.

3.1.1.1. Application-Level. Perhaps the most straightforward approach is to statically
extract application data, and execute it natively using a similar application. For example,
it is possible to extract webpages served by a embedded web server, and host the same
content using a regular web server like Apache. Unfortunately, this approach has multi-
ple drawbacks that are incompatible with our design goal of creating a generic platform
for dynamic analysis of embedded firmware.

An analysis of the firmware images in our dataset shows that many of these con-
tain webpages which rely on non-standard extensions to server-side scripting languages

6
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for access to hardware-specific functionality, such as NVRAM values. For example,
hundreds of images in our dataset make use of the custom functions get_conf() in
PHP and nvram_get() in ASP.NET to obtain device configuration values. However, this
functionality is a custom addition that is not supported by their upstream open-source
counterparts.

Similarly, other firmware images do not store webpages on the filesystem, but in-
stead embed their content within the binary of a custom web server. Finally, such an
approach can only detect vulnerabilities within the application-specific data (e.g., com-
mand injection vulnerabilities in PHP files), but not those within the application binary
or other system components.

3.1.1.2. Process-Level. Another approach is to emulate the behavior of individual pro-
cesses within the context of the original filesystem. This can be achieved by executing
QEMU in user-mode as a single process emulator, constrained using chroot to the original
filesystem. Thus, one could simply launch the original web server from the firmware
image in QEMU to host the router web interface.

Unfortunately, this approach only partially obviates the concerns mentioned above.
While an application would be able to execute within the context of the filesystem,
specific hardware peripherals (e.g., NVRAM) are still unavailable. As a result, when
an application attempts to access the NVRAM peripheral via /dev/nvram, it will likely
terminate in error. Without precise knowledge of the desored system environment, the
host environment can inadvertently affect dynamic analysis of individual processes by
altering program execution.

Minor differences in execution environment can have a significant effect on program
behavior. For example, the alphafs web server, used by multiple firmware images,
verifies hardware-specific product and vendor IDs before accessing NVRAM. If these
values are not present at predetermined physical memory addresses, the web server
ceases operation and terminates with an error message. To this end, the web server uses
the mmap() system call to access memory via /dev/mem, and checks specific offsets for
the ProductID and VendorID of supported EEPROM chips, all of which is difficult to
support in a user-mode emulator.

Similarly, due to limited write cycles on the primary storage device, many firmware
images mount a temporary memory-backed filesystem at boot for volatile data. This
filesystem is mounted and generated dynamically. As a result, the directories /dev/ and
/etc/ may be symbolic links to subdirectories within the temporary filesystem, thus
appearing broken when examined statically. For example, the firmware for the D-Link
DIR-865L wireless router uses a startup script to populate configuration for applica-
tions, including the lighttpd web server. As a result, simple dynamic emulation of the
lighttpd binary will fail, even with the original base filesystem in place.

3.1.1.3. System-Level. In comparison, a system-level emulation approach is able to
overcome these aforementioned challenges. Interfaces for hardware peripherals will
be present, allowing their functionality to be gracefully emulated. Accurate emulation
of the full environment permits dynamically-generated data to be created in the same
manner as on the real device. All processes launched by the system can be analyzed,
including various daemons responsible for protocols such as HTTP, FTP, and Telnet.
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For these reasons, we explicitly chose full system emulation as the basis for FIR-
MADYNE. By leveraging the built-in abstraction provided by the Linux kernel, we re-
place the existing kernel with our modified kernel, which is specifically designed and
instrumented for our emulation environment. Then, in conjunction with a custom user-
space NVRAM implementation, we boot the extracted filesystem and our pre-built ker-
nel within the QEMU full system emulator. Otherwise, booting the original kernel would
likely result in a fatal execution crash, since it only supports a specific hardware plat-
form.

Our results (see §3.2) show that this approach is successful for initial emulation of
over 96.6% of all Linux-based firmware images in our dataset. This is likely due to the
stable and consistent interface between user-space and kernel on Linux systems, with
the exception of custom IOCTL’s introduced by vendor-specific kernel modules. In fact,
Linux kernel developers will revert kernel changes that break backwards-compatibility
for user-space applications; for example, programs built for pre-0.9 (pre-1992) kernels
will still function correctly even on the latest kernel releases.1

However, this does not hold for kernel modules; indeed, one of the drawbacks of
our current implementation is that we cannot load out-of-tree kernel modules located
on the filesystem. Nevertheless, our dataset shows that such support is generally not
necessary, as we use newer kernels that include common functionality built-in. For
example, older 2.4-series mainline kernels lacked netfilter connection tracking and
NAT support for various application protocols, which became available in-tree around
kernel version 2.6.20. As a result, more than 99% of all out-of-tree kernel modules are
not useful for our system, as 58.8% are used to implement various networking protocols
and filtering mechanisms, and 12.7% provide support for specific hardware peripherals.
In comparison, the third-party NetUSB kernel module, which was identified to contain a
remotely-exploitable buffer overflow vulnerability, comprises less than 0.2% of all kernel
modules from our dataset.

3.1.2. Components. Our system, FIRMADYNE, consists of four major components,
which are depicted in Fig. 1 and described below.

(1) Acquisition: A custom web crawler automatically downloads firmware images from
vendor websites for analysis, and stores them in a database. We manually wrote
smart parsers for the website of each vendor to track important metadata such as
vendor, product name, release date, version number, etc., and to distinguish firmware
images from undesirable binaries; e.g. drivers, configuration utilities, etc. We also
supplemented this with firmware images mirrored from the FTP websites of certain
vendors, which can include beta and test images that are not widely released, as well
as other firmware images that were manually downloaded due to vendor websites
that were difficult to crawl automatically.

(2) Extraction: A custom-written extraction utility separates the kernel and root filesys-
tem from within each firmware image, and stores them in normalized form in our
firmware repository.

1https://www.kernel.org/doc/Documentation/stable_api_nonsense.txt

https://www.kernel.org/doc/Documentation/stable_api_nonsense.txt
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Figure 1. Architectural diagram of FIRMADYNE showing the emulation
life-cycle for an example firmware image, as described in §3.1.2.

(3) Emulation: The root filesystem is analyzed to determine the target architecture and
endianness of binaries. Then, a custom library is inserted to emulate the NVRAM pe-
ripheral, and the firmware is initially emulated using a pre-built Linux kernel within
the QEMU [15] full system emulator, all configured with a matching architecture,
endianness, and word-width. Currently, we support the ARM little-endian, MIPS
little-endian, and MIPS big-endian platforms, which comprise 90.8% of our dataset
(§3.2.1.1). During initial emulation, we intercept system calls to the networking sub-
system, which allows us to infer the desired network configuration. Finally, we re-
emulate the firmware with its desired configuration, and verify that it is accessible
over the network.

(4) Analysis: To illustrate the versatility of our platform, we have developed three vul-
nerability detection passes, which are able to assist with finding and verifying vul-
nerabilities. They include analyses for publicly-accessible webpages and SNMP in-
formation, which may be vulnerable to information disclosure, buffer overflow, or
command injection vulnerabilities, as well as an exploit checker for both known and
previously-unknown vulnerabilities.

3.2. Evaluation

In this section, we evaluate our implementation of FIRMADYNE. First, we examine
the composition of our input dataset, and analyze its effect on the emulation fidelity at
every stage in the emulation pipeline. Second, we demonstrate how we leveraged our
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Arch.-Endian TILE-LE ARC-LE M68k-BE x86-LE MIPS64-BE PPC-BE ARM-BE
x86-64-LE Unknown ARM-LE MIPS-BE MIPS-LE Total

# Image(s) 1 10 10 31 50 84 102

147 439 843 3,137 4,632 9,486

Table 1. Breakdown of firmware images by architecture, based on binary
fingerprinting of extracted root filesystems.

system to identify 14 previously-unknown vulnerabilities within the collected firmware
samples. Using proof-of-concept exploits that we developed, we use our system to assess
the prevalence and impact of each on our dataset. Finally, we demonstrate the analysis
flexibility of our system by supplementing it with 60 known exploits, mostly from the
Metasploit Framework [106], to assess prevalence and impact.

It is important to note that the distribution of firmware images across product lines
and device vendors is not uniform, and thus may skew interpretation of the results.
In particular, although we attempt to scrape metadata about the model number and
version number of each firmware image, this information is not always available, nor
is it present in a format that can easily establish a temporal ordering. For example,
vendors may re-release a given product with different hardware, or release a product
with different hardware or firmware in each region. Similarly, there is not a direct
one-to-one correspondence between firmware images and products. For example, some
vendors, such as Mikrotik, distribute a single firmware image for each hardware archi-
tecture, whereas other vendors, such as OpenWRT, distribute different binary releases
of the same firmware image using various encapsulation formats. Given two different
firmware binaries, this raises the question of how functionally identical they may be,
which we do not address. Nevertheless, we attempt to provide a lower-bound on the
number of affected products, where possible.

3.2.1. Statistics.
3.2.1.1. Architectures. For all firmware images with extracted root filesystems, we

were able to identify its architecture by examining the format header of the busybox
binary on the system, or alternatively binaries in /sbin/.

Table 1 shows that the majority of our firmware images are 32-bit MIPS (both big-
endian and little-endian), which constitute approximately 79.4%. The next most popu-
lar architecture type is 32-bit little-endian ARM, which constitutes approximately 8.9%.
Combined, these two architectures constitute 90.8% of all firmware images, with the
remainder forming the little-tail of this distribution.

3.2.1.2. Emulation Progress. As shown in Fig. 2, of the 8,617 extracted firmware im-
ages for which we identified an architecture, our system initially emulated 96.6% (8,591)
successfully. The failures can be attributed to a number of causes, including the lack of
an init binary in a standard location (/bin/init, /etc/init, or /sbin/init), or an un-
bootable filesystem. For example, certain images containing Ralink chipsets are known
to name their init binary ralink_init, which we currently do not support. Likewise,
extraction failures can also affect success of the initial emulation. Since we only extract
the first UNIX-like filesystem from firmware images that contain multiple filesystems,
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Figure 2. Breakdown of firmware images by emulation progress, colored
by vendor.

it is likely that only part of the filesystem has been extracted, leading to a boot failure.
Reassembling such systems into a single filesystem is not straightforward because each
filesystem can potentially be mounted on top of another at arbitrary locations.

Of the 8,591 firmware images that entered the “learning” phase, only 32.3% (2,797)
had their networking configuration successfully inferred. We believe that this decrease
occurred due to failures in the boot process while attempting to infer the network config-
uration. Problems with NVRAM emulation are a significant contributor to these failures.
For example, some routers may not initialize correctly if our NVRAM library was not
able to override the built-in implementation, if insufficient default NVRAM values were
loaded by our library, or if the built-in NVRAM implementation has different function
semantics. These manifest as various crashes or hangs during the boot process, espe-
cially if memory or string manipulation functions (memcpy(), strcpy(), etc.) are called
on NULL values returned for nonexistent keys. Additionally, it is also possible that some
images do not use a NVRAM hardware peripheral, but instead write configuration val-
ues directly to a MTD partition, which we may not successfully emulate.

Other potential sources of networking failures include different naming conventions
for networking devices. For example, devices that utilize Atheros or Ralink chipsets may
expect platform networking devices to be named similarly to ath0 or ra0, respectively,
instead of the generic eth0. Likewise, other devices may expect the presence of a wireless
networking interface such as wlan0, and fail otherwise. In addition, since our ARM little-
endian emulation platform currently supports only up to one emulated Ethernet device,
this may prevent some firmware images from configuring networking correctly.



12 3. SCALABLE DYNAMIC ANALYSIS FOR LINUX-BASED EMBEDDED DEVICES

Exploit ID # Images # Products Affected Vendor(s)
47 282 16 21, 22, 37

56 169 14 16, 21, 35

64 169 27 12, 21, 37

45 136 13 21

43 88 10 12

202 49 11 12, 16, 21, 36, 37, 42

207 35 6 21

60 31 9 7, 12, 19, 21, 37

205 16 5 21

206 14 4 21

203 13 5 12

59 9 N/A 12

200 8 1 21

201 7 1 21

210 7 2 12

4 6 N/A 12

24 5 1 19, 42

213 4 1 21

214 4 1 21

39 3 N/A 12

209 3 1 12

212 3 1 21

61 2 1 42

204 1 N/A 21

211 1 1 21

Table 2. Breakdown of exploits by number of affected firmware images,
number of affected products, and affected vendor(s). Note: N/A indicates
that we do not have sufficient metadata to compute a lower-bound on af-
fected products.

Only 70.8% (1,971) of the 2,797 images with an inferred network configuration are
actually reachable from the network using ping. This may be caused by firewall rules on
the emulated guest that filter ICMP echo requests, resulting in false negatives, or vari-
ous other network configuration issues. For example, our system may have mistakenly
assigned the host TAP interface in QEMU to the WAN interface of the emulated device
instead of a LAN interface, or identified the default IP address of the WAN interface
instead of the LAN interface. Similarly, firmware may change the MAC address of the
emulated network device after it has booted, resulting in stale ARP cache entries and a
machine that appears unreachable.

Surprisingly, our results show that 43% (846 out of 1,971 firmware images) of the
network reachable firmware images are vulnerable to at least one exploit. We discuss
this further in §3.2.2, where we give a breakdown by exploit.
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3.2.2. Vulnerabilities. In Table 2, we provide a breakdown of all successful exploits
by exploit. Exploits in the range #0 – #100 are sourced from the Metasploit Framework,
whereas most exploits greater than or equal to #200 are previously-unknown vulnera-
bilities for which we developed proof-of-concepts (POC’s). This excludes #202, which is
a known vulnerability but not sourced from the Metasploit Framework. Each of these
previously-unknown vulnerabilities has been reported to the respective vendor, follow-
ing the policies of responsible disclosure. We discuss a few specific vulnerabilities below
in greater detail as case studies.

3.2.2.1. Command Injection (#200, #201, #204 – #206, #208). While analyzing the aggre-
gate results of our automated accessible webpages analysis, we discovered six previously-
unpublished command injection vulnerabilities that affect 24 firmware images for wire-
less routers and access points manufactured by Netgear. All six vulnerabilities were
within PHP server-side scripts that provided debugging functionality but appeared to
be accidentally included within production firmware releases. In particular, five of these
were used to change system parameters such as the MAC address of the WLAN adapter,
and the region of the firmware image (e.g., World Wide [WW], United States [US], or
Japan [JP]). The remaining one was used to write manufacturing data such as MAC ad-
dress, serial number, or hardware version into flash memory. Our manual analysis of
the PHP source code revealed that all were straightforward command injection vulnera-
bilities through the $_REQUEST super-global and unsafe use of the exec() function. After
discovering these potential vulnerabilities, we leveraged FIRMADYNE to automatically
verify their exploitability across our entire dataset.

3.2.2.2. Buffer Overflow (#203). Another new vulnerability that we manually discov-
ered, using the results of our automated accessible webpages analysis, was a buffer
overflow vulnerability within firmware images for certain D-Link routers. To implement
user authentication, the webserver sets a client-side cookie labeled dlink_uid to a unique
value that is associated with each authenticated user. Instead of verifying the value of
this cookie within the server-side scripting language of the webpage, this authentication
functionality was actually hard-coded within the webserver, which uses the standard
library functions strstr(), strlen(), and memcpy() to copy the value of the cookie. As
a result, we were able to set the value of this cookie to an overly-long value to cause the
webserver to crash at 0x41414141, another poisoned argument that we monitor for.

3.2.2.3. Information Disclosure (#207, #209 – #214). Using the automated webpage anal-
ysis, we also discovered seven new information disclosure vulnerabilities across our
dataset that affect 51 firmware images for various routers manufactured by both D-Link
and Netgear. One of these (#207) was within an unprotected webpage that provides
diagnostic information for the router, including the WPS PIN and passphrases for all
locally-broadcast wireless networks.

The remaining six vulnerabilities (#209 – #214) were within the Simple Network Man-
agement Protocol (SNMP) daemon of both manufacturers. This feature was enabled by
default likely because these routers were targeted towards small businesses rather than
home users. To interpret results obtained from SNMP queries, one needs access to a
Management Information Base (MIB) file that describes the semantics of each individual
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object (OID) field. As discussed in §3.1.2, our crawlers record links to MIB files in the
collected metadata, enabling manual verification of the obtained results.

Our automated exploit verification showed that these firmware images would re-
spond to unauthenticated SNMP v2c queries for the public and private communities,
and return values for the OID’s that contain web-based access credentials for all users
on the device, and wireless credentials for all locally-broadcast wireless networks.



CHAPTER 4

Protecting WebAssembly with control-flow integrity

The fundamental design of WebAssembly (§4.1) includes multiple security features.
A separate execution stack ensures that programs cannot overwrite return pointers, and
strict function typing ensures that indirect calls must target a function of corresponding
type, all of which help prevent manipulation of control-flow. Linear memory ensures
that all memory accesses are contained within a given memory region, by computing
addresses with greater bit-width to prevent integer overflows, and automatically bounds
checking esulting addresses. Separation of linear memory from the program’s code
and execution stack, as well as the runtime’s internal data structures, limits the scope
of memory safety bugs to the program’s own data. Well-defined language semantics
enable creation of a soundness proof [156] verifying progress and preservation of the
mechanized specification, which allows cross-validation of runtime implementations.

Nevertheless, there is still room for improvement. Past work [95] has shown that
the coarse type system allows multiple source language types to alias into the same
fundamental types in WebAssembly, which weakens type-based protections for indirect
calls. Likewise, they have also shown that overflows within linear memory can be used to
overwrite other program segments. This is because vector data that cannot be converted
into natively-typed variables, such as arrays, lists, or strings, are stored in linear memory,
which is subdivided by the compiler for the program’s heap, stack, and data.

Due to a lack of automatic bounds checking for individual variables or subfields in
linear memory, overflows of automatically-generated stack frames or metadata corrup-
tion attacks against the default heap allocation implementation can be used to overwrite
other program segments. Additionally, since linear memory is mutable and no fine-
grained page protections are available, these overflows can overwrite “constant” data.
However, support for multiple linear memories has already been proposed [126], which
would mitigate many of these issues by allowing heap, stack, and data to be placed in
disjoint linear memories. Other past work [54] has also proposed segment memory that
can only be addressed using handles, which act as a replacement for pointers.

We propose and implement coarse-grained control-flow integrity for WebAssembly,
which if enabled, would have prevented the proposed remote code execution attack [95].
Their attack corrupts the metadata of the heap allocator to overwrite an indirect function
call reference in linear memory, in order to call a different function that executes an
arbitrary command. In conjunction with existing protections for the execution stack,
our control-flow integrity design raises the bar for attackers by mitigating code reuse or
other control-flow attacks.

15
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4.1. Background

In the past few years, major browser vendors have collaboratively developed a low-
level bytecode language to replace JavaScript for high-performance web applications,
known as WebAssembly [76]. As the spiritual successor of Google’s Native Client [130,
163], it provides a safe runtime environment that is compatible with existing applica-
tions written in high-level languages (e.g. C, C++, Rust, etc.), while supporting direct
compilation into native machine code irrespective of browser, architecture, or operating
system. We defer discussion of WebAssembly’s security properties to §4. Recent efforts
have focused on extending WebAssembly with a system interface [67] (WASI) to better
support non-web embeddings, and native representation of opaque reference types [125]
to enable pass-through of JavaScript values.

Early benchmarks from both Chrome’s V8 and Firefox’s SpiderMonkey JavaScript en-
gines have shown [76] that WebAssembly applications are smaller and faster, on average,
than their JavaScript asm.js equivalents, with typical performance within 10% of native.
Subsequent benchmarks on the SPEC CPU2006 and CPU2017 suites have shown [86] a
mean slowdown of up to 1.55x, with a peak of up to 2.5x, compared to native.

WebAssembly [6] is a stack-based bytecode language without explicit registers, where
return values and arguments for instructions are implicitly pushed to and popped from
an operand stack. Currently, all values must correspond to one of four fundamental
types; integers and IEEE-754 floating-point values, each of which can be 32- or 64-bit. Each
binary is represented as a module, which is composed of functions, globals, linear memories,
and tables:

• Functions: Encapsulate a sequence of WebAssembly instructions with a function type,
which takes a sequence of input arguments and returns a sequence of output results.
Control-flow must be structured and well-nested, such that each basic block and loop
are labeled with block/loop and end instructions. Branch instructions, such as br (un-
conditional), br_if (conditional), and br_table (jump table), must specify the relative
depth of an encapsulating block or loop that immediately precedes the target.

At runtime, a fixed set of local variables for each function are zero-initialized, and
can be accessed using special set_local and get_local instructions. Function calls
utilize an execution call stack that is not directly accessible by the program, and is
thus effectively a shadow stack.

• Globals: Allow certain variables to be shared across all functions in the module. Each
global variable is either mutable or immutable, and initialized using a constant ex-
pression. Special get_global and set_global instructions provide access to individ-
ual global variables.

• Linear Memories: Each memory represents a sequence of 64 kB pages that are muta-
ble, contiguous, and resizeable. Individual bytes within a memory can be accessed in
little-endian format using load and store instructions with corresponding bit-length,
and will automatically trap (abort execution) if out-of-bounds. Currently, at most one
such memory is supported.

• Tables: An indexed list of values with the same type. Currently, this can only be used
to store untyped function references for the call_indirect indirect call instruction,
and at most one such table is supported. The indirect call instruction must also
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1 (module
2 (type $out-i64 (func (result i64)))
3

4 (func $zero-i64 (type $out-i64) (i64.const 0x0))
5 (func $one-i64 (type $out-i64) (i64.const 0x1))
6

7 (table $itable funcref
8 (elem (i32.const 1) $zero-i64 $one-i64)
9 )

10 (table $itable-one (type $out-i64)
11 (elem (i32.const 1) $one-i64)
12 )
13

14 (func $call-baseline (param $idx i32) (result i64)
15 (call_indirect (type $out-i64) (local.get $idx))
16 )
17 (func $call-single (param $idx i32) (result i64)
18 (block $cont
19 (br_if $cont (i32.eq (local.get $idx) (i32.const 1)))
20 (unreachable)
21 )
22 (call_indirect (type $out-i64) (local.get $idx))
23 )
24 (func $call-multiple (param $idx i32) (result i64)
25 (call_indirect $itable-zero (local.get $idx))
26 )
27 )

Listing 1: Comparison of indirect calls in WebAssembly, under baseline, single-table CFI,
and multiple-table CFI.

specify an expected function type, which is checked at runtime against the type of
the referenced function. This can be viewed as a very coarse-grained form of control-
flow integrity that is enabled by default, but to avoid confusion, we use control-flow
integrity in this context to refer to additional explicit checks.

4.2. Design

Our approach extends the compiler toolchain to support modern Clang/LLVM CFI [37],
which partitions indirect call targets into equivalence classes based on their source lan-
guage type (§2.3.1). By default, the compiler populates the indirect call table with every
function that is address-taken in the program. As an example, consider the simple pro-
gram shown in Listing 1. In the baseline version (line 14), it performs a normal indirect
call to a function in the default table (line 7), which is checked at runtime against the
specified named type out-i64. Note that the table starts at index 1 (line 8), to avoid
aliasing a valid index with a NULL pointer, and that because the table contains untyped
function references (funcref), the indirect call must explicitly specify a function type,
which here corresponds to a function that takes no parameters and returns a single
64-bit integer value (line 2).
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Under control-flow integrity, additional checks occur before each indirect call. In our
single table design, we pre-assign monotonic table indexes such that members of each
equivalence class are placed consecutively, and we insert a range check at each indirect
call site on the runtime index. Should the check fail, a trap instruction that terminates
the program is executed. As shown in Listing 1, an explicit control-flow integrity check
is inserted before the indirect call (lines 19–22), which validates that the call index equals
one, corresponding to the one-i64 function. If this check fails, instead of continuing with
the indirect call, the program terminates by executing a trap instruction (line 20).

In our multiple table design, we improve performance by placing each equivalence
class in a separate typed table, which leverages existing bounds checks on runtime table
indexes and eliminates explicit range checks. This requires support for multiple tables,
which has been subsumed into the reference types proposal [125], and augments the
call_indirect instruction with an additional argument to specify the referenced indi-
rect table. As shown in Listing 1, a separate typed table (line 10) is explicitly referenced
by the indirect call (line 25). Compared to the single table design, this version improves
performance by eliding the runtime index check (line 19) with an implicit load-time
check for homogeneous function types in the table.

However, this design also has some additional challenges; namely avoiding index
aliasing between multiple tables, and tagging each indirect call site with the correct
table. If indexes are allowed to overlap across multiple tables, then false negative checks
may occur, because automatic bounds checking cannot distinguish between e.g. index 1

from one table and index 1 from another table, since they are both valid indexes. As for
tagging, indirect calls are generated in the compiler frontend, and control-flow integrity
checks are lowered later at link-time, but with multiple tables, the indirect call site also
needs to know its corresponding table. Currently, we use level-ordered search to find
and fix-up the corresponding call site, but the frontend should instead emit a direct link
in the IR.

4.3. Evaluation

To evaluate the performance of our control-flow integrity designs, we implemented
them in the compiler toolchain (binaryen, Clang/LLVM), and added support for mul-
tiple tables in Chrome’s V8 JavaScript engine. We compiled and measured the perfor-
mance of the SPEC CPU2000 benchmark applications, taking the arithmetic mean of
three runs for each, as shown in Figure 1. Since we used an early version of the compiler
toolchain and V8, not all of the SPEC benchmarks were compatible with WebAssembly
due to unrelated compiler bugs, and the vortex benchmark encountered false positive
failures due to strict type matching (§2.3.1). Our results demonstrate that coarse-grained
control-flow integrity has minimal performance impact, with a geometric mean of 99%
relative performance for both designs, and a minimum of 98% and 96% for our single
and multiple table designs, respectively. We believe that the slight decrease in perfor-
mance with multiple tables was due to an unoptimized implementation, as our code was
experimental.
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Figure 1. Relative performance of various SPEC CPU2000 benchmarks in V8.



CHAPTER 5

Ensuring program integrity via hardware-enforced message queues

Existing program protections rely on a variety of intra-process isolation techniques,
such as memory segmentation, disjoint address spaces [60, 99, 120], software fault iso-
lation [154] (SFI), and information hiding (§2.2), to provide security guarantees by par-
titioning the program. However, these software-based isolation mechanisms suffer from
compatibility issues, have significant overhead, or rely on security through obscurity.
Software fault isolation must mask all program pointers to limit their access, which has
high cost and is incompatible with existing libraries. Information hiding has low over-
head, but relies on randomization of program code or layout to discourage attackers,
which has been shown vulnerable to disclosure attacks [131, 135, 140].

A hardware-based alternative is fine-grained instruction monitoring [9, 34, 48, 65]),
which modifies the processor to export a stream of fixed execution events to a special-
purpose processor for analysis. These events correspond to state changes, such as retired
instructions, function calls, or memory accesses, and past work has proposed sending
them to a similarly-sized core [34, 65], multiple microcontroller-sized cores [9], or an
on-chip FPGA [48]. However, these approaches require significant microarchitectural
changes, generate a fixed set of hardware events, and impose filtering overhead on un-
desired events. For example, under FADE [65], regardless of security policy, 84%–99%
of all events are irrelevant and must be discarded. Similarly, under Guardian Council,
different security policies can require anywhere between 2–24 processing elements to
reduce monitoring overhead below 5%, which results in idle cores.

Instead, we observe that a simple and fast AppendWrite inter-process communication
(IPC) primitive can provide this isolation without the drawbacks of past work by lever-
aging existing inter-process isolation. It ensures both authentication and integrity for events
delivered from a monitored program to a separate verifier process. We implement two
variants of AppendWrite; one with no microarchitectural changes using an FPGA, and
another that adds one instruction to the microarchitecture to reduce overhead. Using
this AppendWrite primitive, we design HerQules, a framework for implementing effi-
cient integrity-based security policies, which uses concurrent execution to offload the
overhead of policy enforcement to the verifier process. Our case study on control-flow
integrity against a benchmark program suite demonstrates that HerQules achieves a
significant improvement in correctness, effectiveness, and performance over prior work.

5.1. Design

We assume a strong threat model that allows adversaries to read and write arbitrary
process memory, subject to page table protections. This excludes access to processor
registers and modification of program code, which is typically read-only. We trust the

20
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Figure 1. HerQules Overview

processor microarchitecture and operating system to enforce boundaries between inde-
pendent user-space programs, and between user-space and kernel-space.

Under HerQules, an instrumented program communicates asynchronously with an
external verifier over an IPC channel, sending messages before certain security-relevant
events (e.g., indirect control transfers) occur. Our key insight is that because the instru-
mented program begins execution in a benign state, it will send a message demonstrat-
ing a policy violation before it occurs. Even if the violation results in a total program
compromise, the append-only IPC ensures that the compromised program cannot re-
tract evidence of the violation. To prevent the program from effecting externally-visible
side effects (e.g., leaking secrets, or attacking the rest of the system) before the verifier
detects the compromises, we bound asynchrony at system calls, by pausing execution
until the verifier has processed all in-flight messages.

Below, we highlight the four main components of HerQules with respect to Figure 1.

(1) At compile-time, our compiler pass instruments the program to send messages when
security-relevant events occur. These messages and events are policy dependent.

(2) At run-time, the instrumented program enables HerQules (1a), causing the kernel
to register it with a separate verifier process (1b). Subsequently, the instrumented
program sends messages to the verifier via AppendWrite (2a, 2b).

(3) At some point, the instrumented program sends a system-call message (3a) and per-
forms the system call (3b), where it is initially paused by our kernel module, until the
verifier confirms no policy checks have failed (4a, 4b).

To safely bound the verifier’s asynchrony, HerQules pauses execution at system
calls. A naive approach would then require a round-trip from the kernel to the verifier,
imposing additional latency on the critical path. Hence, we pipeline the System-Call

message (3a) with the system call itself (3b), by instrumenting the program and runtime
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IPC Primitive Append-Only Asynchronous Cost Time (ns)
Message Queue ✓ ✕ System Call 146

Named Pipe ✓ ✕ System Call 316

Socket ✓ ✕ System Call 346

Shared Memory ✕ ✓ Memory Write 12

AppendWrite-FPGA ✓ ✓ Memory Write 102

AppendWrite-µarch ✓ ✓ Memory Write 2

Table 1. Comparison of IPC primitives, split between existing software
mechanisms (top) and our proposed AppendWrite.

libraries to send the System-Call message before system calls. When the verifier re-
ceives a confirmation message, it proactively notifies the kernel to approve the proximate
system call. Note that the kernel and verifier communicate over a separate privileged
channel that is not accessible to the instrumented program, as shown in Figure 1. If no
confirmation arrives within a configurable epoch, the kernel declares a policy violation
and the instrumented program is terminated.

5.1.1. AppendWrite IPC Primitive. Since the instrumented program is untrusted and
may become compromised, our IPC primitive must guarantee authenticity and integrity.
Namely, it must ensure all messages were sent by the instrumented program, and that
no messages have been modified or erased after being sent. We provide the former by
configuring the kernel to arbitrate creation of messaging channels, and ensure the latter
by designing the IPC primitive as a simple append-only channel from an instrumented
program to the verifier.

Existing software- and hardware-based primitives do not satisfy these constraints;
thus, we design two variants of our new hardware-based primitive. One uses a pro-
grammable accelerator (§5.1.1.1), and the other adds a new AppendWrite instruction to the
microarchitecture (§5.1.1.2), which we model in software. We provide a comparison of
various IPC primitives in Table 1, and show the average runtime of a micro-benchmark
that sends multiple 32-byte messages. Note that authenticity can be retrofitted onto
many primitives using kernel arbitration.

Existing software-based primitives either perform poorly or lack our append-only
property. Mechanisms that require a system call (including POSIX queues, pipes, and
sockets) cost hundreds of nanoseconds, require a privilege transition that may flush
hardware caches, and execute synchronously in the calling thread. Traditional perfor-
mance workarounds, such as vectored I/O or other forms of client-side buffering, as well
as fast primitives like shared memory, are all insecure in that a compromised program
can alter or erase in-flight messages.

Many hardware peripherals already contain first-in first-out (FIFO) queues, which we
initially attempted to repurpose for our IPC primitive. For example, network interface
cards (NICs) are widely deployed, and contain separate receive/transmit packet queues
for each physical port. However, we eventually abandoned this approach, because these
hardware resources are not directly accessible to user-space programs without kernel
bypass, which usually requires exclusive access and pre-assignment of programs to
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Design Mechanism Precision Detects UAF Compatibility Performance
Clang/LLVM CFI [37] Language-level Types • ✕ •• • • ••

CCFI [102] Cryptographic MACs • • • ✕ • •
CPI [91] Information Hiding •• ✕ • • • ••
CPI [92] Software Fault Isolation •• ✕ • • • •

HQ-CFI-SfeStk AppendWrite •• ✓ • • • • • •
HQ-CFI-RetPtr AppendWrite • • • ✓ • • • ••

Table 2. Coarse- (top) and fine-grained (mid, bottom) control-flow in-
tegrity designs. More • is better.

physically-connected NIC ports. Kernel bypass also requires certain hardware capabili-
ties, such as an IOMMU, as well as PCI Express (PCIe) Access Control Services on the
root complex for subdividing IOMMU groups, which has limited availability. Software
frameworks for bypass, such as the Data Plane Development Kit (DPDK), implement an
entire networking stack, which adds overhead and must be trusted.

5.1.1.1. Accelerator. We designed an initial variant of AppendWrite using a cache-coherent
FPGA. However, after evaluating it and exploring various optimizations, we observed
that performance was fundamentally limited by memory pipeline stalls and PCIe bus
overhead.

5.1.1.2. Microarchitecture. Hence, we designed a second variant that extends the mi-
croarchitecture with a new AppendWrite(reg) instruction, which stores the message in reg
into a pre-configured appendable memory region and increments the append address. Mul-
tiple encodings of AppendWrite can support messages of different lengths by accepting,
e.g., 64/128/256/512-bit registers.

An appendable memory region must be accessible to the instrumented program,
but cannot be directly writable. Thus, the AppendWrite instruction can store to a mem-
ory page that is not writable only if it is in the appendable memory region. We add
two privileged 64-bit control registers, AppendAddr and MaxAppendAddr, to configure a
per-core appendable memory region. AppendAddr identifies the address where the next
message should be written, whereas MaxAppendAddr identifies the end of the append-
able memory region, such that AppendAddr cannot be incremented past MaxAppendAddr.
When this would occur, the AppendWrite instruction triggers a processor fault, which the
kernel can use to allocate a new buffer, or simply reset the appendable memory region.

5.2. Control-Flow Integrity

We provide a case study on using HerQules for control-flow integrity. Table 2 com-
pares our designs against existing coarse-grained (§2.3.1) and fine-grained (§2.3.2) de-
signs. Coarse-grained offers good performance but can fail to catch exploits due to large
equivalence classes, whereas fine-grained is more precise but historically imposes non-
trivial overhead. HerQules is the only design that protects against use-after-free (UAF)
vulnerabilities, and is compatible with all benchmark programs.

5.2.1. Forward-Edge Transitions. Our HQ-CFI design protects the following forward-
edge control-flow pointers:

(1) Function pointers: Direct pointers to executable code.
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(2) Virtual method table pointers: Indirect pointers in C++ objects that refer to a global
class-specific virtual method table (vtable), which is composed of function pointers.
Note that vtables are typically stored in read-only memory.

(3) Virtual-method-table table pointers: Indirect pointers in certain C++ objects that use
multiple inheritance. They refer to a global class-specific vtable table (VTT) that con-
tains the relative offsets of vtables within other vtables.
We send messages to notify the verifier of certain operations on control-flow pointers,

listed below. For example, programs may manipulate blocks (contiguous chunks) of
memory with certain library functions. It is difficult to statically determine whether
control-flow pointers are present within memory blocks, so we notify the verifier of
these events at runtime. We describe the semantics for our messages below.
• Pointer-Define(p, v): Initialize a control-flow pointer at p with value v.
• Pointer-Check(p, v): Validate that a control-flow pointer at p with current value v

matches its previous definition. If not, this pointer is corrupt or a use-after-free.
• Pointer-Invalidate(p): Remove any control-flow pointer at p.
• Pointer-Block-Copy(src, dst, sz): Copy all control-flow pointers from [src, src +

sz) to [dst, dst + sz). These ranges may intersect, and pre-existing control-flow point-
ers in the destination will be invalidated. This matches the behavior of memcpy and
memmove1.

• Pointer-Block-Move(src, dst, sz): Move all control-flow pointers from [src, src +
sz) to [dst, dst + sz). These ranges must not intersect, and all pre-existing control-flow
pointers in both will be invalidated. This matches the behavior of realloc.

• Pointer-Block-Invalidate(p, sz): Invalidate all control-flow pointers in the address
range [p, p + sz). This matches the behavior of free.
We use compiler instrumentation, which can be decomposed into the following three

components, to automatically insert messaging on control-flow pointers. We also modify
the standard library implementation of longjmp and setjmp to send messages on the
function pointer used to implement non-local gotos.

(1) Language-Specific Annotations (Clang): Insert checks before calling function pointers
or object methods, using built-in CFI annotations.

(2) Initial Lowering (LLVM): Before optimization, convert CFI annotations into runtime
messaging calls.

(3) Final Lowering (LLVM/gold [145]): After built-in optimizations, execute our op-
timizations, instrument calls to certain library functions, initialize globally-scoped
control-flow pointers, and optionally link our messaging runtime inline.
We also enable three C++-specific optimization passes, which execute separately.

These devirtualization passes convert indirect method calls into direct calls: Virtual
Pointer Invariance [117, 118], Whole Program Devirtualization [38], and Dead Virtual
Function Elimination [139].

Our messages only support two arguments, but certain messages use three (e.g.
Pointer-Block-Copy). Since our design currently protects user-space programs on
x86_64 systems with four-level paging, we decompose the third size argument into two

1A memory copy that permits overlapping input/output ranges.
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Design Errors False Ps. Invalid Ok Design Errors False Ps. Invalid Ok
Baseline 0 0 0 48 CPI 14 8 14 31

Clang/LLVM CFI 3 16 3 32 HQ-CFI-SfeStk 0 0 0 48

CCFI 2 29 5 19 HQ-CFI-RetPtr 0 0 0 48

Table 3. Correctness of various CFI designs.

chunks that are stored in the upper 17 bits of the first and second pointer arguments. As
an optimization, this limits manipulation of instrumented memory blocks to 16 GB in
size, which is compatible with all of our benchmarks.

5.2.2. Backward-Edge Transitions. We develop a similar design, HQ-RetPtr, to pro-
tect return pointers. Although it cannot defend against fundamental architectural races
(§2.3.3), it is not vulnerable to disclosure attacks that have affected past work.
• Pointer-Define(p, v): See above.
• Pointer-Check-Invalidate(p, v): Performs the equivalent of Pointer-Check(p, v),

and if successful, then Pointer-Invalidate(p, v).
If a function may write to memory, is known to return, is not always tail called,

and contains stack allocations, we send a Pointer-Define(p, v) message on the return
address in the prologue of each stack frame, and a Pointer-Check-Invalidate(p, v) in
the epilogue before returning.

5.3. Evaluation

We evaluate HerQules on multiple benchmarks: RIPE [124, 159], SPEC CPU2006 [82]
v1.2, SPEC CPU2017 [25] v1.0.5, and NGINX [141] v1.18.0, using the musl C runtime
library. On SPEC, we execute the reference input and apply patches for compatibility and
memory safety bugs, including wrong type casts. On NGINX, we measure arithmetic
mean request throughput using wrk [66] for 60 seconds. Our results demonstrate the
correctness (§5.3.1), effectiveness (§5.3.2), and performance (§5.3.3) of HerQules.

We compare HerQules against three previous designs: modern Clang/LLVM CFI [37],
CCFI [102], and CPI [91, 92] with SFI, each representing different trade-offs. Clang/LLVM
CFI has a fast but imprecise coarse-grained design (2.3.1), while CCFI and CPI are state-
of-the-art pointer integrity designs, which are slower but maximally precise (§2.3.2.1).
Since CCFI and CPI use older versions of the Clang/LLVM compiler, their runtimes are
normalized to a baseline without C++ optimizations. Otherwise, these optimizations
are enabled when building for HerQules and modern Clang/LLVM CFI. For CCFI, we
recompile all libraries to reserve eleven XMM registers, which breaks calling conven-
tions [3]. Due to the prevalence of false positives in past work (§5.3.1), we configured all
designs not to terminate programs after a policy violation.

We distinguish our policies as follows: HQ-CFI-SfeStk combines HQ-CFI with the
Clang/LLVM safe stack (§2.3.3), while HQ-CFI-RetPtr combines HQ-CFI with HQ-
RetPtr (§5.2.2). To identify IPC primitives, we use postfix -MQ for POSIX message
queues (§5.1.1), -FPGA for the accelerator, and -Model for the software model of our
microarchitecture-based primitive.
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Design BSS Data Heap Stack Total
Baseline 214 234 234 272 954

HQ-CFI-SfeStk 10 10 10 0 30

HQ-CFI-RetPtr 0 0 0 0 0

Table 4. Successful RIPE exploits, grouped by overflow origin.
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Figure 2. Relative performance of CFI designs, sorted on HQ-CFI-SfeStk-
Model (left to right). Suffix ‘+’ denotes C++.

5.3.1. Correctness. To evaluate each design, we built and executed all of our bench-
marks with CFI enabled. We summarize our results in Table 3, distinguishing between
errors (crashes/hangs), false positive violations, invalid results (output doesn’t verify),
and successful runs. Note that some categories are not mutually exclusive.

5.3.2. Effectiveness. To show the effectiveness of our policies, we execute the RIPE
test suite, which contains hundreds of buffer overflow exploits. We use RIPE64 [124], a
port for 64-bit systems that also adds 100 exploits, because the original [159] only sup-
ports 32-bit programs. On all configurations, we disable ASLR, non-executable stack,
and stack canaries. Under HerQules, we also disable enforcement of system call confir-
mations after the execve system call, because shellcode system calls are used by RIPE to
verify exploits.

On an initial run of the SPEC2006 and SPEC2017 benchmarks, HQ-CFI detected pol-
icy violations from use-after-free bugs in the the omnetpp* benchmarks. They both suf-
fer from a subtle C++ static initialization order bug, which occurs because the language
provides no guarantees about initialization/destruction order of static objects across
compilation units. We note that this bug has persisted despite over 11 years of continu-
ous development, as both benchmarks correspond to different versions of the OMNeT++
simulator [153].

5.3.3. Performance. We show a comparison of HQ-CFI-SfeStk-Model and HQ-CFI-
RetPtr-Model against related work in Figure 2. Note that we omit measurements on
benchmarks where related work encountered errors or produced invalid output, but not
false positives.



CHAPTER 6

Developing effective protections for program integrity

In this section, we propose to explore designs for more effective program protection
against memory corruption bugs. We focus on improving precision over past work by
modeling intra-object overflows and avoiding pointer analysis, while reducing overhead
by eliminating unnecessary instrumentation. Two different approaches for achieving
this goal are data-flow integrity and memory safety; however, it may ultimately be faster
to eagerly detect out-of-bounds memory stores, rather than instrumenting both memory
loads and stores to lazily detect load-time corruption. In addition, given increasing avail-
ability of non-volatile (persistent) memory, greater memory safety is needed to ensure
consistency [35, 49, 162, 167] of persistent memory regions. We do note, however, that
neither proposed design protects directly against bad casts, as our approaches utilize the
static type to help determine if stores are authorized.

6.1. Data-flow Integrity

Data-flow integrity [30] (§2.4) validates memory values at runtime against pre-computed
static reaching definitions. It instruments both memory loads and stores, in order to
insert checks and prevent corruption of the runtime definitions table. Unfortunately,
their approach suffers from numerous drawbacks. The underlying pointer analysis is
not field-sensitive, and relies on approximate pointer analysis, which the authors ac-
knowledge can result in false negatives. Usage of software fault isolation to protect the
definitions table also imposes high runtime overhead, because every memory store must
be masked. Furthermore, past work [63] has exploited the inherent undecidability [123]
of pointer aliasing to defeat similar control-flow integrity protections.

One proposed design could track definitions at runtime rather than relying on static
alias analysis, much like pointer integrity for control-flow integrity (§2.3.2). Such a de-
sign could utilize our past work for program integrity via message queues (§5), which
eliminates the need for intra-process isolation mechanisms like software fault isolation.
Not only would this improve analysis precision, but it would also reduce scope by only
instrumenting relevant memory loads and stores.

A key design decision that must be addressed is to determine what program data
should be protected. Past work on pointer integrity (§2.3.2) already includes certain
types of data that may affect program control flow, so any new design must at least
offer similar protections as well. At the same time, it is not feasible to simply protect
all program data, for multiple reasons. There must be a mechanism to distinguish be-
tween “authorized” and “unauthorized” stores, otherwise memory safety bugs will be
implicitly become authorized. For example, pointer integrity only permits explicit stores
to sensitive pointers, whereas data-flow integrity assumes that “correct programs do not

27
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Design Type Pointer Checks Invariant Metadata Complete
AddressSanitizer Location-based Loads, Stores Memory Validity Shadow State ✕

LowFat Pointer-based Loads, Stores, Arithmetic Pointer Validity Object Sizes ✓
Write Integrity Testing Pointer-based Stores, Indirect Calls Memory Coloring Points-To Sets ✕

Table 1. Comparison of various memory safety designs.

use pointer arithmetic to navigate between independent objects in memory” [30], or re-
lies on static dependency analysis [136] to identify explicit accesses to sensitive data used
by access control checks. We propose to extend our existing pointer integrity protections
to:

(1) Protect the heap memory allocator, which is commonly targeted for developing read/write
exploit primitives.

(2) Protect values that may affect system call arguments.

6.1.1. Performance. As suggested previously, perhaps the most important consider-
ation in determining the feasibility of a proposed approach is performance. Indeed, past
work has limited the scope of their protection to only direct control-flow pointers [91] for
pointer integrity, or only control-data (return addresses) and local variables for data-flow
integrity [30]. Below, we identify a number of optimizations that we plan to explore, in
descending order of estimated impact:

(1) Identify “pure data” that cannot affect program behavior either directly or indirectly,
and elide instrumentation for memory stores to it. For example, this could include
data that is only read from and written to disk/network/etc.

(2) Enable safe stacks (§2.3.3), and elide instrumentation for variables or register spills
placed on the safe stack.

(3) Identify sibling and/or tail-recursive function calls, and elide instrumentation on re-
turn addresses for such calls.

(4) Identify read-only system calls, and elide synchronization with the verifier at such
calls.

6.2. Spatial Memory Safety

In comparison to data-flow integrity, past work on memory safety (§2.1) focuses
directly on identifying out-of-bounds accesses. These include LowFat [55, 56], Address-
Sanitizer [132] (ASan), and Write Integrity Testing [10], which we discuss below and
compare in Figure 1.

Write integrity testing shares a similar design with that of data-flow integrity [30],
as both use pointer analysis to identify the set of authorized writes for each memory
location. However, whereas data-flow integrity relies on reaching definitions, write in-
tegrity testing directly partitions and assigned identifiers (colors) based on points-to
sets, by merging intersecting sets until a fixed point is reached. Because this can per-
mit false negatives, the authors attempt to remediate imprecision by inserting guards
between objects to detect overflow, and by checking separate equivalence classes of in-
direct callsites and call targets–a form of coarse-grained control flow integrity (§2.3.1).
Nevertheless, this latter protection still relies on the same imprecise pointer analysis, and
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neither protection can detect intra-object overflows. Also, unlike other memory safety
designs discussed below, write integrity testing does not detect out-of-bounds loads.

AddressSanitizer, which has been integrated into both the Clang/LLVM and GCC
compilers, uses shadow state to track memory validity at 8-byte granularity. However,
their approach also permits false negatives, because out-of-bounds accesses can coincide
with other valid objects, despite the presence of adjacent guard regions. In contrast,
LowFat is sound and guaranteed to detect out-of-bounds pointers, but also incurs addi-
tional false positives, because some programs may deliberately create pointers to valid
objects in this manner (§6.3.1). Their approach checks that certain pointer arithmetic and
all pointer dereferences are always within bounds. Each object allocation is rounded
up to the nearest predefined power-of-2 size, and a custom allocator assigns addresses
such that allocation sizes can be computed from a table lookup of bitwise arithmetic
on the pointer address, which avoids storing size metadata inside pointers or objects
themselves.

However, both approaches suffer from common drawbacks of memory safety de-
signs, which include additional memory and performance overhead, as well as lack
of support for intra-object overflows. In fact, very few designs [109, 116] can detect
intra-object overflows, and those that do either lack support for C++ [109] or rely on
the deprecated [77] MPX [23] extension. Our experiments with the SPEC CPU2006 [82]
and CPU2017 [25] benchmarks demonstrate that both designs have significant overhead,
and measure a geometric mean of 48% relative performance with respect to an unin-
strumented baseline, as shown in Figure 1. They also show that LowFat is incompatible
with both the 502.gcc_r and 602.gcc_s benchmarks, which crash during execution, and
that Clang/LLVM AddressSanitizer can miscompile programs by incorrectly removing
virtual function calls, which we have now fixed1.

One proposed design could focus exclusively on the safety of memory stores, which
are needed by exploit primitives. In comparison with past work, this could improve
precision by supporting intra-object subfields, while decreasing overhead by only in-
strumenting memory stores that may go out-of-bounds. Such a design could track the
type and offset/provenance of every memory store at runtime, and detect potential out-
of-bounds accesses when either there is a type mismatch, or the offset/provenance is not
within the parent object, as outlined by the following invariants. Additional instrumen-
tation may be necessary to improve precision of heap or stack allocations, to ensure that
the runtime is aware of the type and size of each memory object.

(1) Memory stores should only modify variables of the same type from a compatible base
pointer.

(2) Memory stores should never overwrite variables that are not directly address-taken.

6.2.1. Performance. As with data-flow integrity, performance of the final design is
critical; however, a memory safety approach may ultimately be faster than a data-flow in-
tegrity approach, for the following reasons. By eagerly detecting out-of-bounds accesses,
instrumentation only needs to be inserted at memory allocations and stores, instead of

1https://reviews.llvm.org/D88368

https://reviews.llvm.org/D88368
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Design Errors False Ps. Invalid Ok
Baseline 0 0 0 47

Clang/LLVM ASan 0 0 0 47

LowFat 2 9 0 36

Table 2. Correctness of various memory safety designs.

memory loads and stores, as with data-flow integrity. Below, we identify a number of
further optimizations that we plan to explore, in descending order of estimated impact:

(1) Maintain memory store metadata in-process, which allows for removal of the messag-
ing primitive, external verifier, and system call verification. No additional protection
is needed for the metadata region, because unsafe program writes will never have a
correct offset/provenance.

(2) Check only for mismatched invariants on stores, without instrumenting allocations.
(3) Statically analyze allocation boundaries, and elide instrumentation for memory writes

with constant or loop-indexed offsets that are known to be safe (in bounds).
(4) Identify loop indices, and only emit a single range check for memory writes within a

loop that perform a homogeneous contiguous linear traversal.
(5) Enable safe stacks (§2.3.3), and elide instrumentation for variables or register spills

placed on the safe stack.

6.3. Evaluation

6.3.1. Correctness. We manually reviewed all warnings issued by each design on
the SPEC benchmark suites. Most were for known [55, 116, 132] memory safety bugs
in the CPU2006 benchmarks, so we patched the benchmarks to fix these, and reran our
experiments. We summarize the final results in Table 2, distinguishing between errors
(crashes/hangs), false positive violations, invalid results (output doesn’t verify), and
successful runs.

All warnings issued by LowFat were determined to be false positives, as out-of-
bounds accesses do not occur until invalid pointers are actually dereferenced. Many
SPEC benchmarks intentionally create pointers to valid objects from out-of-bounds point-
ers to other objects [55]. Other warnings occur on actual out-of-bounds pointers to in-
valid objects, but are never dereferenced. For example, in 400.perlbench, out-of-bounds
pointers are used as a sentinel value, whereas in 526.blender_r, out-of-bounds pointers
created during initialization of a doubly-linked list are immediately overwritten after-
wards. Finally, in 525.x264_r and 625.x264_s, an out-of-bounds pointer is passed as
an argument to a prefetching function, but because prefetch is defined not to fault on
invalid addresses, this does not affect program correctness.

6.3.2. Performance. Since past work [10, 30, 136] on data-flow integrity is not open-
source or directly-comparable, we plan to evaluate our ultimate design by comparing
its effectiveness and performance against related work [55, 56, 132] on spatial memory
safety. In addition to the SPEC benchmark suite, we also plan to evaluate against other
real-world applications, such as the NGINX webserver, as well as multi-threaded and
persistent memory applications.
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Figure 1. Relative performance of memory safety designs and our naive
prototype, with failed runs not shown. Suffix ‘+’ denotes C++.

In Figure 1, we compare past work on memory safety against a naive prototype,
only for the purpose of evaluating performance overhead. Our prototype does not ac-
tually implement any memory integrity policy; rather, it simply inserts instrumentation
at every memory store, with the exception of those involving objects on the safe stack
(§2.3.3), and executes with both inlining and system call checking disabled. Measuring
this baseline performance is important, because both proposed designs add additional
instrumentation; either memory loads (for data-flow integrity), or memory allocations
(for memory safety). Using our software model of our microarchitecture-based IPC
primitive (§5.3), we show four different variants of this prototype: HQ-Model, which
sends a message on every memory store, HQ-Model-0.1, which sends a message on
every 1 in 10 memory stores, HQ-Model-0.05, which sends a message on every 1 in 20

memory stores, and HQ-Model-0.025, which sends a message on every 1 in 40 memory
stores. We also show a fifth variant, HQ-Model-NoMsg, which calls an empty instru-
mentation function that does not send any messages.

These results demonstrate that our final approach will need a geometric mean rela-
tive performance of approx. 48% to achieve parity with AddressSanitizer and LowFat,
whereas currently HQ-Model, HQ-Model-0.1, HQ-Model-0.05, HQ-Model-0.025, and
HQ-Model-NoMsg are at 31.2%, 48.3%, 55.3%, 58.4%, and 65.4% respectively. Since our
goal is to improve precision by modeling intra-object overflows and avoiding imprecise
pointer analysis, the exact performance target is somewhat negotiable, but higher perfor-
mance is always better. Enabling inlining and other optimizations will also provide an
additional performance boost. These results suggest that the performance of a memory
safety approach is likely to be higher than that of a data-flow integrity approach, because
memory loads are likely more frequent than memory allocations, and because our pro-
posed optimizations for memory safety (§6.2.1) can reduce overhead without affecting
protection scope, which is not true for that of data-flow integrity (§6.1.1).

6.4. Thesis Timeline

• October 2020: Give thesis proposal, develop proposed work.
• November 2020 - March 2021: Continue development.
• March - May 2021: Thesis writing, continue development, consider paper submission

(Oakland: March/June, CCS/NDSS: May, USENIX Security: June).
• May 2021: Defend.
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